scholarly journals Correction to: Associations of thigh muscle fat infiltration with isometric strength measurements based on chemical shift encoding-based water-fat magnetic resonance imaging

2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Stephanie Inhuber ◽  
Nico Sollmann ◽  
Sarah Schlaeger ◽  
Michael Dieckmeyer ◽  
Egon Burian ◽  
...  

After publication of this article [1], it is noticed it contained some errors in the Methods section.

2019 ◽  
Vol 3 (1) ◽  
Author(s):  
Stephanie Inhuber ◽  
Nico Sollmann ◽  
Sarah Schlaeger ◽  
Michael Dieckmeyer ◽  
Egon Burian ◽  
...  

Abstract Background Assessment of the thigh muscle fat composition using magnetic resonance imaging (MRI) can provide surrogate markers in subjects suffering from various musculoskeletal disorders including knee osteoarthritis or neuromuscular diseases. However, little is known about the relationship with muscle strength. Therefore, we investigated the associations of thigh muscle fat with isometric strength measurements. Methods Twenty healthy subjects (10 females; median age 27 years, range 22–41 years) underwent chemical shift encoding-based water-fat MRI, followed by bilateral extraction of the proton density fat fraction (PDFF) and calculation of relative cross-sectional area (relCSA) of quadriceps and ischiocrural muscles. Relative maximum voluntary isometric contraction (relMVIC) in knee extension and flexion was measured with a rotational dynamometer. Correlations between PDFF, relCSA, and relMVIC were evaluated, and multivariate regression was applied to identify significant predictors of muscle strength. Results Significant correlations between the PDFF and relMVIC were observed for quadriceps and ischiocrural muscles bilaterally (p = 0.001 to 0.049). PDFF, but not relCSA, was a statistically significant (p = 0.001 to 0.049) predictor of relMVIC in multivariate regression models, except for left-sided relMVIC in extension. In this case, PDFF (p = 0.005) and relCSA (p = 0.015) of quadriceps muscles significantly contributed to the statistical model with R2adj = 0.548. Conclusion Chemical shift encoding-based water-fat MRI could detect changes in muscle composition by quantifying muscular fat that correlates well with both extensor and flexor relMVIC of the thigh. Our results help to initiate early, individualised treatments to maintain or improve muscle function in subjects who do not or not yet show pathological fatty muscle infiltration.


PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0226037
Author(s):  
Anette Karlsson ◽  
Anneli Peolsson ◽  
James Elliott ◽  
Thobias Romu ◽  
Helena Ljunggren ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (6) ◽  
pp. e0234061
Author(s):  
James M. Elliott ◽  
Andrew C. Smith ◽  
Mark A. Hoggarth ◽  
Stephanie R. Albin ◽  
Ken A. Weber ◽  
...  

2021 ◽  
Author(s):  
Melinda Maree Franettovich Smith ◽  
James M Elliott ◽  
Aiman Al-Najjar ◽  
Kenneth A Weber II ◽  
Mark Hoggarth ◽  
...  

Abstract Background: The intrinsic muscles of the foot are key contributors to foot function and are important to evaluate in lower limb disorders. Magnetic resonance imaging (MRI), provides a non-invasive option to measure muscle morphology and composition, which are primary determinants of muscle function. Ultra-high-field (7-T) magnetic resonance imaging provides sufficient signal to evaluate the morphology of the intrinsic foot muscles, and, when combined with chemical-shift sequences, measures of muscle composition can be obtained. Here we aim to provide a proof-of-concept method for measuring intrinsic foot muscle morphology and composition with high-field MRI.Methods: One healthy female (age 39 years, mass 65 kg, height 1.73 m) underwent MRI. A T1-weighted VIBE – radio-frequency spoiled 3D steady state GRE – sequence of the whole foot was acquired on a Siemens 7T MAGNETOM scanner, as well as a 3T MAGNETOM Prisma scanner for comparison. A high-resolution fat/water separation image was also acquired using a 3D 2-point DIXON sequence at 7T. Coronal plane images from 3T and 7T scanners were compared. Using 3D Slicer software, regions of interest were manually contoured for each muscle on 7T images. Muscle volumes and percentage of muscle fat infiltration were calculated (muscle fat infiltration % = Fat/(Fat+Water) x100) for each muscle. Results: Compared to the 3T images, the 7T images provided superior resolution, particularly at the forefoot, to facilitate segmentation of individual muscles. Muscle volumes ranged from 1.5 cm3 and 19.8 cm3, and percentage muscle fat infiltration ranged from 9.2% to 15.0%. Conclusion: This proof-of-concept study demonstrates a feasible method of quantifying muscle morphology and composition for individual intrinsic foot muscles using advanced high-field MRI techniques. This method can be used in future studies to better understand intrinsic foot muscle morphology and composition in healthy individuals, as well as those with lower disorders.


2018 ◽  
Vol 18 (5) ◽  
pp. 717-725 ◽  
Author(s):  
Rebecca Abbott ◽  
Anneli Peolsson ◽  
Janne West ◽  
James M. Elliott ◽  
Ulrika Åslund ◽  
...  

2020 ◽  
Author(s):  
Melinda Maree Franettovich Smith ◽  
James M Elliott ◽  
Aiman Al-Najjar ◽  
Kenneth A Weber II ◽  
Mark Hoggarth ◽  
...  

Abstract Background: The intrinsic muscles of the foot are key contributors to foot function and are important to evaluate in lower limb disorders. Magnetic resonance imaging (MRI), provides a non-invasive option to measure muscle morphology and composition, which are primary determinants of muscle function. Ultra-high-field (7-T) magnetic resonance imaging provides sufficient signal to evaluate the morphology of the intrinsic foot muscles, and, when combined with chemical-shift sequences, measures of muscle composition can be obtained. Here we aim to provide a proof-of-concept method for measuring intrinsic foot muscle morphology and composition with high-field MRI.Methods: One healthy female (age 39 years, mass 65 kg, height 1.73 m) underwent MRI. A T1-weighted VIBE – radio-frequency spoiled 3D steady state GRE – sequence of the whole foot was acquired on a Siemens 7T MAGNETOM scanner, as well as a 3T MAGNETOM Prisma scanner for comparison. A high-resolution fat/water separation image was also acquired using a 3D 2-point DIXON sequence at 7T. Coronal plane images from 3T and 7T scanners were compared. Using 3D Slicer software, regions of interest were manually contoured for each muscle on 7T images. Muscle volumes and percentage of muscle fat infiltration were calculated (muscle fat infiltration % = Fat/(Fat+Water) x100) for each muscle. Results: Compared to the 3T images, the 7T images provided superior resolution, particularly at the forefoot, to facilitate segmentation of individual muscles. Muscle volumes ranged from 1.5 cm3 and 19.8 cm3, and percentage muscle fat infiltration ranged from 9.2% to 15.0%. Conclusion: This proof-of-concept study demonstrates a feasible method of quantifying muscle morphology and composition for individual intrinsic foot muscles using advanced high-field MRI techniques. This method can be used in future studies to better understand intrinsic foot muscle morphology and composition in healthy individuals, as well as those with lower disorders.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Melinda M. Franettovich Smith ◽  
James M. Elliott ◽  
Aiman Al-Najjar ◽  
Kenneth A. Weber ◽  
Mark A. Hoggarth ◽  
...  

Abstract Background The intrinsic muscles of the foot are key contributors to foot function and are important to evaluate in lower limb disorders. Magnetic resonance imaging (MRI), provides a non-invasive option to measure muscle morphology and composition, which are primary determinants of muscle function. Ultra-high-field (7-T) magnetic resonance imaging provides sufficient signal to evaluate the morphology of the intrinsic foot muscles, and, when combined with chemical-shift sequences, measures of muscle composition can be obtained. Here we aim to provide a proof-of-concept method for measuring intrinsic foot muscle morphology and composition with high-field MRI. Methods One healthy female (age 39 years, mass 65 kg, height 1.73 m) underwent MRI. A T1-weighted VIBE – radio-frequency spoiled 3D steady state GRE – sequence of the whole foot was acquired on a Siemens 7T MAGNETOM scanner, as well as a 3T MAGNETOM Prisma scanner for comparison. A high-resolution fat/water separation image was also acquired using a 3D 2-point DIXON sequence at 7T. Coronal plane images from 3T and 7T scanners were compared. Using 3D Slicer software, regions of interest were manually contoured for each muscle on 7T images. Muscle volumes and percentage of muscle fat infiltration were calculated (muscle fat infiltration % = Fat/(Fat + Water) x100) for each muscle. Results Compared to the 3T images, the 7T images provided superior resolution, particularly at the forefoot, to facilitate segmentation of individual muscles. Muscle volumes ranged from 1.5 cm3 and 19.8 cm3, and percentage muscle fat infiltration ranged from 9.2–15.0%. Conclusions This proof-of-concept study demonstrates a feasible method of quantifying muscle morphology and composition for individual intrinsic foot muscles using advanced high-field MRI techniques. This method can be used in future studies to better understand intrinsic foot muscle morphology and composition in healthy individuals, as well as those with lower disorders.


Sign in / Sign up

Export Citation Format

Share Document