European Radiology Experimental
Latest Publications


TOTAL DOCUMENTS

245
(FIVE YEARS 172)

H-INDEX

13
(FIVE YEARS 8)

Published By Springer (Biomed Central Ltd.)

2509-9280

2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Chie Tsuruta ◽  
Kenji Hirata ◽  
Kohsuke Kudo ◽  
Naoya Masumori ◽  
Masamitsu Hatakenaka

Abstract Background We investigated the correlation between texture features extracted from apparent diffusion coefficient (ADC) maps or diffusion-weighted images (DWIs), and grade group (GG) in the prostate peripheral zone (PZ) and transition zone (TZ), and assessed reliability in repeated examinations. Methods Patients underwent 3-T pelvic magnetic resonance imaging (MRI) before radical prostatectomy with repeated DWI using b-values of 0, 100, 1,000, and 1,500 s/mm2. Region of interest (ROI) for cancer was assigned to the first and second DWI acquisition separately. Texture features of ROIs were extracted from comma-separated values (CSV) data of ADC maps generated from several sets of two b-value combinations and DWIs, and correlation with GG, discrimination ability between GG of 1–2 versus 3–5, and data repeatability were evaluated in PZ and TZ. Results Forty-four patients with 49 prostate cancers met the eligibility criteria. In PZ, ADC 10% and 25% based on ADC map of two b-value combinations of 100 and 1,500 s/mm2 and 10% based on ADC map with b-value of 0 and 1,500 s/mm2 showed significant correlation with GG, acceptable discrimination ability, and good repeatability. In TZ, higher-order texture feature of busyness extracted from ADC map of 100 and 1,500 s/mm2, and high gray-level run emphasis, short-run high gray-level emphasis, and high gray-level zone emphasis from DWI with b-value of 100 s/mm2 demonstrated significant correlation, excellent discrimination ability, but moderate repeatability. Conclusions Some DWI-related features showed significant correlation with GG, acceptable to excellent discrimination ability, and moderate to good data repeatability in prostate cancer, and differed between PZ and TZ.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Adnan Bibic ◽  
Tea Sordia ◽  
Erik Henningsson ◽  
Linda Knutsson ◽  
Freddy Ståhlberg ◽  
...  

Abstract Background Our aim was to introduce damaged red blood cells (RBCs) as a tool for haemodynamic provocation in rats, hypothesised to cause decreased cerebral blood flow (CBF) and prolonged water capillary transfer time (CTT), and to investigate whether expected changes in CBF could be observed and if haemodynamic alterations were reflected by the CTT metric. Methods Damaged RBCs exhibiting a mildly reduced deformability were injected to cause aggregation of RBCs. Arterial spin labelling (ASL) magnetic resonance imaging experiments were performed at 9.4 T. Six datasets (baseline plus five datasets after injection) were acquired for each animal in a study group and a control group (13 and 10 female adult Wistar rats, respectively). For each dataset, ASL images at ten different inversion times were acquired. The CTT model was adapted to the use of a measured arterial input function, implying the use of a realistic labelling profile. Repeated measures ANOVA was used (alpha error = 0.05). Results After injection, significant differences between the study group and control group were observed for relative CBF in white matter (up to 20 percentage points) and putamen (up to 18–20 percentage points) and for relative CTT in putamen (up to 35–40 percentage points). Conclusions Haemodynamic changes caused by injection of damaged RBCs were observed by ASL-based CBF and CTT measurements. Damaged RBCs can be used as a tool for test and validation of perfusion imaging modalities. CTT model fitting was challenging to stabilise at experimental signal-to-noise ratio levels, and the number of free parameters was minimised.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Peter Bo Jørgensen ◽  
Bart L. Kaptein ◽  
Kjeld Søballe ◽  
Stig S. Jakobsen ◽  
Maiken Stilling

Abstract Background Investigation of polyethylene liner movement in total hip arthroplasty requires bead-marking for radiographic visibility of the liner. However, occlusion of markers poses a challenge for marker registration in radiographs. Methods The polyethylene of a dual mobility acetabular system was marked with twelve 1-mm tantalum markers (four groups of three markers) using a custom-made drill guide. Liner motion in a phantom and a patient was investigated with dynamic radiostereometry analysis (dRSA) at 1-year follow-up and static radiostereometry analysis (sRSA) postoperatively and at 1- and 2-year follow-up. A combined marker configuration (CMC) model was calculated from the registered positions of the liner markers and the femoral head in several images. Furthermore, the CMC model and the theoretic marker positions from computer-assisted models of the drill guide were combined in a hybrid model. Results The CMC model included eleven markers in the phantom and nine markers in the patient, which was sufficient for dRSA. Liner movement in the phantom followed liner contact with the femoral neck, while liner movement in the patient was independent. The hybrid model was necessary to determine liner orientation in sRSA recordings, which clearly changed from postoperative to 1- and 2-year follow-up even though the patient was positioned similarly. Conclusion Polyethylene liner motion in dual mobility hip prosthesis can be assessed with CMC models in dRSA recordings. In sRSA, the liner position between follow-ups is unpredictable and analysis requires inclusion of all markers in the model, accomplished with a hybrid marker model. Trial registration ClinicalTrials.gov [NCT02301182], 25 October 2015.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Luis Martí-Bonmatí ◽  
Alejandro Rodríguez-Ortega ◽  
Amadeo Ten-Esteve ◽  
Ángel Alberich-Bayarri ◽  
Bernardo Celda ◽  
...  

Abstract Background Indirect 1H-magnetic resonance (MR) imaging of 17O-labelled water allows imaging in vivo dynamic changes in water compartmentalisation. Our aim was to describe the feasibility of indirect 1H-MR methods to evaluate the effect of H217O on the MR relaxation rates by using conventional a 3-T equipment and voxel-wise relaxation rates. Methods MR images were used to calculate the R1, R2, and R2* relaxation rates in phantoms (19 vials with different H217O concentrations, ranging from 0.039 to 5.5%). Afterwards, an experimental animal pilot study (8 rats) was designed to evaluate the in vivo relative R2 brain dynamic changes related to the intravenous administration of 17O-labelled water in rats. Results There were no significant changes on the R1 and R2* values from phantoms. The R2 obtained with the turbo spin-echo T2-weighted sequence with 20-ms echo time interval had the higher statistical difference (0.67 s−1, interquartile range 0.34, p < 0.001) and Spearman correlation (rho 0.79). The R2 increase was adjusted to a linear fit between 0.25 and 5.5%, represented with equation R2 = 0.405 concentration + 0.3215. The highest significant differences were obtained for the higher concentrations (3.1–5.5%). The rat brain MR experiment showed a mean 10% change in the R2 value after the H217O injection with progressive normalisation. Conclusions Indirect 1H-MR imaging method is able to measure H217O concentration by using R2 values and conventional 3-T MR equipment. Normalised R2 relative dynamic changes after the intravenous injection of a H217O saline solution provide a unique opportunity to map water pathophysiology in vivo, opening the analysis of aquaporins status and modifications by disease at clinically available 3-T proton MR scanners.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Federica Vernuccio ◽  
Roberto Cannella ◽  
Tommaso Vincenzo Bartolotta ◽  
Massimo Galia ◽  
An Tang ◽  
...  

AbstractOver the past two decades, the epidemiology of chronic liver disease has changed with an increase in the prevalence of nonalcoholic fatty liver disease in parallel to the advent of curative treatments for hepatitis C. Recent developments provided new tools for diagnosis and monitoring of liver diseases based on ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI), as applied for assessing steatosis, fibrosis, and focal lesions. This narrative review aims to discuss the emerging approaches for qualitative and quantitative liver imaging, focusing on those expected to become adopted in clinical practice in the next 5 to 10 years. While radiomics is an emerging tool for many of these applications, dedicated techniques have been investigated for US (controlled attenuation parameter, backscatter coefficient, elastography methods such as point shear wave elastography [pSWE] and transient elastography [TE], novel Doppler techniques, and three-dimensional contrast-enhanced ultrasound [3D-CEUS]), CT (dual-energy, spectral photon counting, extracellular volume fraction, perfusion, and surface nodularity), and MRI (proton density fat fraction [PDFF], elastography [MRE], contrast enhancement index, relative enhancement, T1 mapping on the hepatobiliary phase, perfusion). Concurrently, the advent of abbreviated MRI protocols will help fulfill an increasing number of examination requests in an era of healthcare resource constraints.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Flora H. P. van Leeuwen ◽  
Beatrice Lena ◽  
Jaco J. M. Zwanenburg ◽  
Lize F. D. van Vulpen ◽  
Lambertus W. Bartels ◽  
...  

Abstract Background Intra-articular blood causes irreversible joint damage, whilst clinical differentiation between haemorrhagic joint effusion and other effusions can be challenging. An accurate non-invasive method for the detection of joint bleeds is lacking. The aims of this phantom study were to investigate whether magnetic resonance imaging (MRI) T1 and T2 mapping allows for differentiation between simple and haemorrhagic joint effusion and to determine the lowest blood concentration that can be detected. Methods Solutions of synovial fluid with blood concentrations ranging from 0 to 100% were scanned at 1.5, 3, and 7 T. T1 maps were generated with an inversion recovery technique and T2 maps from multi spin-echo sequences. In both cases, the scan acquisition times were below 5 min. Regions of interest were manually drawn by two observers in the obtained T1 and T2 maps for each sample. The lowest detectable blood concentration was determined for all field strengths. Results At all field strengths, T1 and T2 relaxation times decreased with higher blood concentrations. The lowest detectable blood concentrations using T1 mapping were 10% at 1.5 T, 25% at 3 T, and 50% at 7 T. For T2 mapping, the detection limits were 50%, 5%, and 25%, respectively. Conclusions T1 and T2 mapping can detect different blood concentrations in synovial fluid in vitro at clinical field strengths. Especially, T2 measurements at 3 T showed to be highly sensitive. Short acquisition times would make these methods suitable for clinical use and therefore might be promising tools for accurate discrimination between simple and haemorrhagic joint effusion in vivo.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Ivan Dudurych ◽  
Antonio Garcia-Uceda ◽  
Zaigham Saghir ◽  
Harm A. W. M. Tiddens ◽  
Rozemarijn Vliegenthart ◽  
...  

AbstractAirways segmentation is important for research about pulmonary disease but require a large amount of time by trained specialists. We used an openly available software to improve airways segmentations obtained from an artificial intelligence (AI) tool and retrained the tool to get a better performance. Fifteen initial airway segmentations from low-dose chest computed tomography scans were obtained with a 3D-Unet AI tool previously trained on Danish Lung Cancer Screening Trial and Erasmus-MC Sophia datasets. Segmentations were manually corrected in 3D Slicer. The corrected airway segmentations were used to retrain the 3D-Unet. Airway measurements were automatically obtained and included count, airway length and luminal diameter per generation from the segmentations. Correcting segmentations required 2–4 h per scan. Manually corrected segmentations had more branches (p < 0.001), longer airways (p < 0.001) and smaller luminal diameters (p = 0.004) than initial segmentations. Segmentations from retrained 3D-Unets trended towards more branches and longer airways compared to the initial segmentations. The largest changes were seen in airways from 6th generation onwards. Manual correction results in significantly improved segmentations and is potentially a useful and time-efficient method to improve the AI tool performance on a specific hospital or research dataset.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Thomas Ying ◽  
Pablo Borrelli ◽  
Lars Edenbrandt ◽  
Olof Enqvist ◽  
Reza Kaboteh ◽  
...  

Abstract Background Radical cystectomy for urinary bladder cancer is a procedure associated with a high risk of complications, and poor overall survival (OS) due to both patient and tumour factors. Sarcopenia is one such patient factor. We have developed a fully automated artificial intelligence (AI)-based image analysis tool for segmenting skeletal muscle of the torso and calculating the muscle volume. Methods All patients who have undergone radical cystectomy for urinary bladder cancer 2011–2019 at Sahlgrenska University Hospital, and who had a pre-operative computed tomography of the abdomen within 90 days of surgery were included in the study. All patients CT studies were analysed with the automated AI-based image analysis tool. Clinical data for the patients were retrieved from the Swedish National Register for Urinary Bladder Cancer. Muscle volumes dichotomised by the median for each sex were analysed with Cox regression for OS and logistic regression for 90-day high-grade complications. The study was approved by the Swedish Ethical Review Authority (2020-03985). Results Out of 445 patients who underwent surgery, 299 (67%) had CT studies available for analysis. The automated AI-based tool failed to segment the muscle volume in seven (2%) patients. Cox regression analysis showed an independent significant association with OS (HR 1.62; 95% CI 1.07–2.44; p = 0.022). Logistic regression did not show any association with high-grade complications. Conclusion The fully automated AI-based CT image analysis provides a low-cost and meaningful clinical measure that is an independent biomarker for OS following radical cystectomy.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Irmak Durur-Subasi ◽  
Duygu Kose ◽  
Muhammed Yayla ◽  
Busra Sirin ◽  
Adem Karaman ◽  
...  

Abstract Background We investigated whether levosimendan prevents contrast medium nephrotoxicity with glycerol aggravation in rats. Methods Forty-eight Wistar albino rats were assigned to eight groups (n = 6 × 8). No medication was administered to group I (controls); glycerol (intramuscular injection of 25% glycerol, 10 mL/kg) group II; intravenous iohexol 10 mL/kg to group III; glycerol and iohexol to group IV; iohexol and intraperitoneal levosimendan 0.25 mg/kg to group V; glycerol, iohexol, and levosimendan 0.25 mg/kg to group VI; iohexol and levosimendan 0.5 mg/kg to group VII; and glycerol, iohexol, and levosimendan 0.5 mg/kg to group VIII. One-day water withdrawal and glycerol injection prompted renal damage; iohexol encouraged nephrotoxicity; levosimendan was administered 30 min after glycerol injection and continued on days 2, 3, and 4. The experiment was completed on day 5. Serum blood urea nitrogen (BUN) and creatinine levels, superoxide dismutase (SOD) activity, glutathione (GSH), malondialdehyde (MDA) levels, tumour necrosis factor-α (TNF-α), nuclear factor kappa ß (NFK-ß), interleukin 6 (IL-6), and histopathological marks were assessed. One-way analysis of variance and Duncan’s multiple comparison tests were used. Results Levosimendan changed serum BUN (p = 0.012) and creatinine (p = 0.018), SOD (p = 0.026), GSH (p = 0.012), and MDA (p = 0.011). Levosimendan significantly downregulated TNF-α (p = 0.022), NFK-ß (p = 0.008), and IL-6 (p = 0.033). Histopathological marks of hyaline and haemorrhagic cast were improved in levosimendan-injected groups. Conclusion Levosimendan showed nephroprotective properties due to its vasodilator, oxidative distress decreasing and inflammatory cytokine preventing belongings.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Francesco Giganti ◽  
Sydney Lindner ◽  
Jonathan W. Piper ◽  
Veeru Kasivisvanathan ◽  
Mark Emberton ◽  
...  

AbstractThe technical requirements for the acquisition of multiparametric magnetic resonance imaging (mpMRI) of the prostate have been clearly outlined in the Prostate Imaging Reporting and Data System (PI-RADS) guidelines, but there is still huge variability in image quality among centres across the world. It has been difficult to quantify what constitutes a good-quality image, and a first attempt to address this matter has been the publication of the Prostate Imaging Quality (PI-QUAL) score and its dedicated scoring sheet. This score includes the assessment of technical parameters that can be obtained from the DICOM files along with a visual evaluation of certain features on prostate MRI (e.g., anatomical structures). We retrospectively analysed the image quality of 10 scans from different vendors and magnets using a semiautomated dedicated PI-QUAL software program and compared the time needed for assessing image quality using two methods (semiautomated assessment versus manual filling of the scoring sheet). This semiautomated software is able to assess the technical parameters automatically, but the visual assessment is still performed by the radiologist. There was a significant reduction in the reporting time of prostate mpMRI quality according to PI-QUAL using the dedicated software program compared to manual filling (5′54″ versus 7′59″; p = 0.005). A semiautomated PI-QUAL software program allows the radiologist to assess the technical details related to the image quality of prostate mpMRI in a quick and reliable manner, allowing clinicians to have more confidence that the quality of mpMRI of the prostate is sufficient to determine patient care.


Sign in / Sign up

Export Citation Format

Share Document