scholarly journals Automated closed-loop control of diabetes: the artificial pancreas

2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Boris Kovatchev
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoteng Gao ◽  
Huangjiang Ning ◽  
Youqing Wang

Automated closed-loop control of blood glucose concentration is a daily challenge for type 1 diabetes mellitus, where insulin and glucagon are two critical hormones for glucose regulation. According to whether glucagon is included, all artificial pancreas (AP) systems can be divided into two types: unihormonal AP (infuse only insulin) and bihormonal AP (infuse both insulin and glucagon). Even though the bihormonal AP is widely considered a promising direction, related studies are very scarce due to this system’s short research history. More importantly, there are few studies to compare these two kinds of AP systems fairly and systematically. In this paper, two switching rules, P-type and PD-type, were proposed to design the logic of orchestrates switching between insulin and glucagon subsystems, where the delivery rates of both insulin and glucagon were designed by using IMC-PID method. These proposed algorithms have been compared with an optimal unihormonal system on virtual type 1 diabetic subjects. Thein silicoresults demonstrate that the proposed bihormonal AP systems have outstanding superiorities in reducing the risk of hypoglycemia, smoothing the glucose level, and robustness with respect to insulin/glucagon sensitivity variations, compared with the optimal unihormonal AP system.


Author(s):  
Leah M. Wilson ◽  
Peter G. Jacobs ◽  
Katrina L. Ramsey ◽  
Navid Resalat ◽  
Ravi Reddy ◽  
...  

<b>Objective: </b>To assess the efficacy and feasibility of a dual-hormone closed loop system with insulin and a novel liquid stable glucagon formulation compared with an insulin-only closed loop system and a predictive low glucose suspend system. <p><b>Research Design and Methods:</b> In a 76-hour, randomized, crossover, outpatient study, 23 participants with type 1 diabetes used three modes of the Oregon Artificial Pancreas system: (1) dual-hormone (DH) closed loop control, (2) insulin-only single-hormone (SH) closed loop control and (3) predictive low glucose suspend (PLGS). The primary endpoint was percent time in hypoglycemia (<70 mg/dL) from start of in-clinic aerobic exercise (45mins at 60% VO<sub>2max</sub>) to 4 hours after.</p> <p><b>Results:</b> DH reduced hypoglycemia compared with SH during and after exercise (DH 0.0% [0.0-4.2], SH 8.3% [0.0-12.5], p=0.025). There was an increased time in hyperglycemia (>180mg/dL) during and after exercise for DH vs SH (20.8% DH vs. 6.3% SH, p=0.038). Mean glucose during the entire study duration was: DH 159.2, SH 151.6, PLGS 163.6 mg/dL. Across the entire study duration, DH resulted in 7.5% more time in target range (70-180 mg/dL) compared with the PLGS system (71.0% vs. 63.4%, p=0.044). For the entire study duration, DH had 28.2% time in hyperglycemia versus 25.1% for SH (p=0.044) and 34.7% for PLGS (p=0.140). Four participants experienced nausea related to glucagon leading 3 to withdraw from the study. </p> <p><b>Conclusions:</b> The glucagon formulation demonstrated feasibility in a closed loop system. The dual-hormone system reduced hypoglycemia during and after exercise with some increase in hyperglycemia.</p>


2012 ◽  
Vol 59 (11) ◽  
pp. 2986-2999 ◽  
Author(s):  
S. D. Patek ◽  
L. Magni ◽  
E. Dassau ◽  
C. Hughes-Karvetski ◽  
C. Toffanin ◽  
...  

Diabetes Care ◽  
2014 ◽  
Vol 37 (7) ◽  
pp. 1789-1796 ◽  
Author(s):  
Boris P. Kovatchev ◽  
Eric Renard ◽  
Claudio Cobelli ◽  
Howard C. Zisser ◽  
Patrick Keith-Hynes ◽  
...  

2018 ◽  
Vol 45 ◽  
pp. 1-9 ◽  
Author(s):  
Emilia Fushimi ◽  
Nicolás Rosales ◽  
Hernán De Battista ◽  
Fabricio Garelli

2019 ◽  
Vol 40 (6) ◽  
pp. 1521-1546 ◽  
Author(s):  
Rayhan A Lal ◽  
Laya Ekhlaspour ◽  
Korey Hood ◽  
Bruce Buckingham

Abstract Recent, rapid changes in the treatment of type 1 diabetes have allowed for commercialization of an “artificial pancreas” that is better described as a closed-loop controller of insulin delivery. This review presents the current state of closed-loop control systems and expected future developments with a discussion of the human factor issues in allowing automation of glucose control. The goal of these systems is to minimize or prevent both short-term and long-term complications from diabetes and to decrease the daily burden of managing diabetes. The closed-loop systems are generally very effective and safe at night, have allowed for improved sleep, and have decreased the burden of diabetes management overnight. However, there are still significant barriers to achieving excellent daytime glucose control while simultaneously decreasing the burden of daytime diabetes management. These systems use a subcutaneous continuous glucose sensor, an algorithm that accounts for the current glucose and rate of change of the glucose, and the amount of insulin that has already been delivered to safely deliver insulin to control hyperglycemia, while minimizing the risk of hypoglycemia. The future challenge will be to allow for full closed-loop control with minimal burden on the patient during the day, alleviating meal announcements, carbohydrate counting, alerts, and maintenance. The human factors involved with interfacing with a closed-loop system and allowing the system to take control of diabetes management are significant. It is important to find a balance between enthusiasm and realistic expectations and experiences with the closed-loop system.


Sign in / Sign up

Export Citation Format

Share Document