A Closed-Loop Control Strategy for Glucose Control in Artificial Pancreas Systems

Author(s):  
J. Galadanci ◽  
R.A. Shafik ◽  
J. Mathew ◽  
A. Acharyya ◽  
D.K. Pradhan
2019 ◽  
Vol 40 (6) ◽  
pp. 1521-1546 ◽  
Author(s):  
Rayhan A Lal ◽  
Laya Ekhlaspour ◽  
Korey Hood ◽  
Bruce Buckingham

Abstract Recent, rapid changes in the treatment of type 1 diabetes have allowed for commercialization of an “artificial pancreas” that is better described as a closed-loop controller of insulin delivery. This review presents the current state of closed-loop control systems and expected future developments with a discussion of the human factor issues in allowing automation of glucose control. The goal of these systems is to minimize or prevent both short-term and long-term complications from diabetes and to decrease the daily burden of managing diabetes. The closed-loop systems are generally very effective and safe at night, have allowed for improved sleep, and have decreased the burden of diabetes management overnight. However, there are still significant barriers to achieving excellent daytime glucose control while simultaneously decreasing the burden of daytime diabetes management. These systems use a subcutaneous continuous glucose sensor, an algorithm that accounts for the current glucose and rate of change of the glucose, and the amount of insulin that has already been delivered to safely deliver insulin to control hyperglycemia, while minimizing the risk of hypoglycemia. The future challenge will be to allow for full closed-loop control with minimal burden on the patient during the day, alleviating meal announcements, carbohydrate counting, alerts, and maintenance. The human factors involved with interfacing with a closed-loop system and allowing the system to take control of diabetes management are significant. It is important to find a balance between enthusiasm and realistic expectations and experiences with the closed-loop system.


Author(s):  
William J. Emblom ◽  
Klaus J. Weinmann

This paper describes the development and implementation of closed-loop control for oval stamp forming tooling using MATLAB®’s SIMULINK® and the dSPACE®CONTROLDESK®. A traditional PID controller was used for the blank holder pressure and an advanced controller utilizing fuzzy logic combining a linear quadratic gauss controller and a bang–bang controller was used to control draw bead position. The draw beads were used to control local forces near the draw beads. The blank holder pressures were used to control both wrinkling and local forces during forming. It was shown that a complex, advanced controller could be modeled using MATLAB’s SIMULINK and implemented in DSPACE CONTROLDESK. The resulting control systems for blank holder pressures and draw beads were used to control simultaneously local punch forces and wrinkling during the forming operation thereby resulting in a complex control strategy that could be used to improve the robustness of the stamp forming processes.


PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0116323 ◽  
Author(s):  
Haitao Nie ◽  
Kehui Long ◽  
Jun Ma ◽  
Dan Yue ◽  
Jinguo Liu

Sign in / Sign up

Export Citation Format

Share Document