scholarly journals Electricity load forecasting: a systematic review

Author(s):  
Isaac Kofi Nti ◽  
Moses Teimeh ◽  
Owusu Nyarko-Boateng ◽  
Adebayo Felix Adekoya

Abstract The economic growth of every nation is highly related to its electricity infrastructure, network, and availability since electricity has become the central part of everyday life in this modern world. Hence, the global demand for electricity for residential and commercial purposes has seen an incredible increase. On the other side, electricity prices keep fluctuating over the past years and not mentioning the inadequacy in electricity generation to meet global demand. As a solution to this, numerous studies aimed at estimating future electrical energy demand for residential and commercial purposes to enable electricity generators, distributors, and suppliers to plan effectively ahead and promote energy conservation among the users. Notwithstanding, load forecasting is one of the major problems facing the power industry since the inception of electric power. The current study tried to undertake a systematic and critical review of about seventy-seven (77) relevant previous works reported in academic journals over nine years (2010–2020) in electricity demand forecasting. Specifically, attention was given to the following themes: (i) The forecasting algorithms used and their fitting ability in this field, (ii) the theories and factors affecting electricity consumption and the origin of research work, (iii) the relevant accuracy and error metrics applied in electricity load forecasting, and (iv) the forecasting period. The results revealed that 90% out of the top nine models used in electricity forecasting was artificial intelligence based, with artificial neural network (ANN) representing 28%. In this scope, ANN models were primarily used for short-term electricity forecasting where electrical energy consumption patterns are complicated. Concerning the accuracy metrics used, it was observed that root-mean-square error (RMSE) (38%) was the most used error metric among electricity forecasters, followed by mean absolute percentage error MAPE (35%). The study further revealed that 50% of electricity demand forecasting was based on weather and economic parameters, 8.33% on household lifestyle, 38.33% on historical energy consumption, and 3.33% on stock indices. Finally, we recap the challenges and opportunities for further research in electricity load forecasting locally and globally.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mehdi Khashei ◽  
Fatemeh Chahkoutahi

Purpose The purpose of this paper is to propose an extensiveness intelligent hybrid model to short-term load electricity forecast that can simultaneously model the seasonal complicated nonlinear uncertain patterns in the data. For this purpose, a fuzzy seasonal version of the multilayer perceptrons (MLP) is developed. Design/methodology/approach In this paper, an extended fuzzy seasonal version of classic MLP is proposed using basic concepts of seasonal modeling and fuzzy logic. The fundamental goal behind the proposed model is to improve the modeling comprehensiveness of traditional MLP in such a way that they can simultaneously model seasonal and fuzzy patterns and structures, in addition to the regular nonseasonal and crisp patterns and structures. Findings Eventually, the effectiveness and predictive capability of the proposed model are examined and compared with its components and some other models. Empirical results of the electricity load forecasting indicate that the proposed model can achieve more accurate and also lower risk rather than classic MLP and some other fuzzy/nonfuzzy, seasonal nonseasonal, statistical/intelligent models. Originality/value One of the most appropriate modeling tools and widely used techniques for electricity load forecasting is artificial neural networks (ANNs). The popularity of such models comes from their unique advantages such as nonlinearity, universally, generality, self-adaptively and so on. However, despite all benefits of these methods, owing to the specific features of electricity markets and also simultaneously existing different patterns and structures in the electrical data sets, they are insufficient to achieve decided forecasts, lonely. The major weaknesses of ANNs for achieving more accurate, low-risk results are seasonality and uncertainty. In this paper, the ability of the modeling seasonal and uncertain patterns has been added to other unique capabilities of traditional MLP in complex nonlinear patterns modeling.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 611
Author(s):  
Fath U Min Ullah ◽  
Noman Khan ◽  
Tanveer Hussain ◽  
Mi Young Lee ◽  
Sung Wook Baik

In this article, we present an in-depth comparative analysis of the conventional and sequential learning algorithms for electricity load forecasting and optimally select the most appropriate algorithm for energy consumption prediction (ECP). ECP reduces the misusage and wastage of energy using mathematical modeling and supervised learning algorithms. However, the existing ECP research lacks comparative analysis of various algorithms to reach the optimal model with real-world implementation potentials and convincingly reduced error rates. Furthermore, these methods are less friendly towards the energy management chain between the smart grids and residential buildings, with limited contributions in saving energy resources and maintaining an appropriate equilibrium between energy producers and consumers. Considering these limitations, we dive deep into load forecasting methods, analyze their performance, and finally, present a novel three-tier framework for ECP. The first tier applies data preprocessing for its refinement and organization, prior to the actual training, facilitating its effective output generation. The second tier is the learning process, employing ensemble learning algorithms (ELAs) and sequential learning techniques to train over energy consumption data. In the third tier, we obtain the final ECP model and evaluate our method; we visualize the data for energy data analysts. We experimentally prove that deep sequential learning models are dominant over mathematical modeling techniques and its several invariants by utilizing available residential electricity consumption data to reach an optimal proposed model with smallest mean square error (MSE) of value 0.1661 and root mean square error (RMSE) of value 0.4075 against the recent rivals.


Sign in / Sign up

Export Citation Format

Share Document