scholarly journals Insilico design, ADMET screening, MM-GBSA binding free energy of novel 1,3,4 oxadiazoles linked Schiff bases as PARP-1 inhibitors targeting breast cancer

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Narayan Shridhar Deshpande ◽  
Gowdru Srinivasa Mahendra ◽  
Natasha Naval Aggarwal ◽  
Banylla Felicity Dkhar Gatphoh ◽  
Bistuvalli Chandrashekharappa Revanasiddappa

Abstract Background Poly(ADP-ribose) polymerases (PARPs), a nuclear protein belongs to a new class of drugs, which mainly target tumours with DNA repair defects. They are mainly involved in the multiple cellular processes in addition to the DNA repair process. They act directly on the base excision repair, which is considered as one of the important pathway for cell survival in breast cancer. These belong to the active members of DNA repair assembly and evolved as a key target in the anti-cancer drug discovery. 1,3,4-Oxadiazoles are also well known anticancer agents. Results A novel series of 1,3,4-oxadiazoles linked to Schiff bases (T1-21) were designed and subjected to In-silico analysis against PARP-1 (PDB ID:5DS3) enzyme targeting against breast cancer. Molecular docking study for the designed compounds (T1-21) was performed by In-silico ADMET screening by QikProp module, Glide module and MM-GBSA binding free energy calculations by using Schrodinger suit 2019–2. The PARP-1 enzyme shows the binding affinity against the newly designed molecules (T1-21) based on the glide scores. Compounds T21, T12 showed very good glide score by the molecular docking studies and compared with the standard Tamoxifen. The binding free energies by the MM-GBSA assay were found to be consistent. The pharmacokinetic (ADMET) parameters of all the newly designed compounds were found to be in the acceptable range. Conclusion The selected 1,3,4-oxadiazole-schiff base conjugates seems to be one of the potential source for the further development of anticancer agents against PARP-1 enzyme. The results revealed that some of the compounds T21, T17, T14, T13, T12, T8 with good glide scores showed very significant activity against breast cancer

2021 ◽  
Vol 17 (1) ◽  
pp. 249-265
Author(s):  
Selvaraj Ayyamperumal ◽  

The enzyme, α-topoisomerase II (α-Topo II), is known to regulate efficiently the topology of DNA. It is highly expressed in rapidly proliferating cells and plays an important role in replication, transcription and chromosome organisation. This has prompted several investigators to pursue α-Topo II inhibitors as anticancer agents. δ-Carboline, a natural product, and its synthetic derivatives are known to exert potent anticancer activity by selectively targeting α-Topo II. Therefore, it is of interest to design carboline derivatives fused with pyrrolidine-2,5-dione in this context. δ-Carbolines fused with pyrrolidine-2,5-dione are of interest because the succinimide part of fused heteroaromatic molecule can interact with the ATP binding pocket via the hydrogen bond network with selectivity towards α-Topo II. The 300 derivatives designed were subjected to the Lipinski rule of 5, ADMET and toxicity prediction. The designed compounds were further analysed using molecular docking analysis on the active sites of the α-Topo II crystal structure (PDB ID:1ZXM). Molecular dynamic simulations were also performed to compare the binding mode and stability of the protein-ligand complexes. Compounds with ID numbers AS89, AS104, AS119, AS209, AS239, AS269, and AS299 show good binding activity compared to the co-crystal ligand. Molecular Dynamics simulation studies show that the ligand binding to α-Topo II in the ATP domain is stableand the protein-ligand conformation remains unchanged. Binding free energy calculations suggest that seven molecules designed are potential inhibitors for α-Topo II for further consideration as anticancer agents.


2019 ◽  
Vol 11 (2) ◽  
pp. 118-128 ◽  
Author(s):  
Rajagopal Kalirajan ◽  
Arumugasamy Pandiselvi ◽  
Byran Gowramma ◽  
Pandiyan Balachandran

Background: Human Epidermal development factor Receptor-2 (HER2) is a membrane tyrosine kinase which is overexpressed and gene amplified in human breast cancers. HER2 amplification and overexpression have been linked to important tumor cell proliferation and survival pathways for 20% of instances of breast cancer. 9-aminoacridines are significant DNA-intercalating agents because of their antiproliferative properties. Objective: Some novel isoxazole substituted 9-anilinoacridines(1a-z) were designed by in-silico technique for their HER2 inhibitory activity. Docking investigations of compounds 1a-z are performed against HER2 (PDB id-3PP0) by using Schrodinger suit 2016-2. Methods: Molecular docking study for the designed molecules 1a-z are performed by Glide module, in-silico ADMET screening by QikProp module and binding free energy by Prime-MMGBSA module of Schrodinger suit. The binding affinity of designed molecules 1a-z towards HER2 was chosen based on GLIDE score. Results: Many compounds showed good hydrophobic communications and hydrogen bonding associations to hinder HER2. The compounds 1a-z, aside from 1z have significant Glide scores in the scope of - 4.91 to - 10.59 when compared with the standard Ethacridine (- 4.23) and Tamoxifen (- 3.78). The in-silico ADMET properties are inside the suggested about drug likeness. MM-GBSA binding of the most intense inhibitor is positive. Conclusion: The outcomes reveal that this study provides evidence for the consideration of isoxazole substituted 9-aminoacridine derivatives as potential HER2 inhibitors. The compounds, 1s,x,v,a,j,r with significant Glide scores may produce significant anti breast cancer activity and further in vitro and in vivo investigations may prove their therapeutic potential.


2017 ◽  
Vol 13 (4) ◽  
pp. 736-749 ◽  
Author(s):  
Huiming Cao ◽  
Yuzhen Sun ◽  
Ling Wang ◽  
Chunyan Zhao ◽  
Jianjie Fu ◽  
...  

The binding of TTR with sulfated-PBDEs and OH-PBDEs shows different molecular recognition mechanisms.


Author(s):  
Neni Frimayanti ◽  
◽  
Marzieh Yaeghoobi ◽  
Ihsan Ikhtiarudin ◽  
Dhea Rizki Wannisyah Putri ◽  
...  

In silico study was performed to twelve 1,5-benzothiazepine chalcone derivatives with the protein target from the crystallographic structure modeling of the enzyme tyrosine kinase. The objective of this study is to execute and to estimate the biological activity of chalcone-based 1,5-benzothiazepine derivatives as potential inhibitors for breast cancer MCF7. To get insight into potential anticancer activities, molecular docking, molecular dynamic and ADME prediction were performed. Docking results reported that compound MA9 with binding free energy of -11.2 kcal / mol can interact through hydrogen bonds with amino acids Cys788 on 1T46 protein active site. In addition, the lowest binding free energy conformation indicated its stability during molecular dynamic simulation. MA9 is also shown to have drug likeness properties based on ADME prediction. In order to evaluate the modeling outcomes, MTT assay were performed for some of the most and least promising benzologs (i.e., MA1, MA6, MA8 and MA9). As expected, compound MA9 with the best calculated anticancer properties revealed the best inhibition against MCF7cell line in vitro. Thus, this compound was chosen as the reference for the next stage in the drug design.


Sign in / Sign up

Export Citation Format

Share Document