A NONLINEAR LEAST‐SQUARES METHOD FOR SEISMIC REFRACTION MAPPING—PART I: ALGORITHM AND PROCEDURE
An iterative inversion method (Reframap) based on the kinematic properties of critically refracted waves is developed. The method is based on ray tracing and assumes homogeneous and isotropic media and ray paths confined to a vertical plane through each source‐detector pair. Unlike the earlier Profile or Time‐Term Methods, no restrictions are imposed on interface topography except that it be continuous almost everywhere (in the mathematical sense). As in the preexisting methods, more observations than unknowns are assumed. The algorithm and procedure, on which the Reframap Method is based, generate apparent dips for each source detector pair at the noncritical interfaces from the slope of a least‐squares line approximation to the interface functional in the neighborhood of each refraction point. In turn, the dip and path along the critical refractor is, at every iteration, pairwise approximated by a line through the critical refracting points. The incidence angles are computed recursively by Snell’s law. The solution of the overdetermined, nonlinear multiple refractor time‐distance system of simultaneous equations is sought by Marquardt’s algorithm for least‐squares estimation of critical refractor velocity and vertical thickness under each element.