Toward a three‐dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations

Geophysics ◽  
1984 ◽  
Vol 49 (6) ◽  
pp. 780-786 ◽  
Author(s):  
Misac N. Nabighian

The paper extends to three dimensions (3-D) the two‐dimensional (2-D) Hilbert transform relations between potential field components. For the 3-D case, it is shown that the Hilbert transform is composed of two parts, with one part acting on the X component and one part on the Y component. As for the previously developed 2-D case, it is shown that in 3-D the vertical and horizontal derivatives are the Hilbert transforms of each other. The 2-D Cauchy‐Riemann relations between a potential function and its Hilbert transform are generalized for the 3-D case. Finally, the previously developed concept of analytic signal in 2-D can be extended to 3-D as a first step toward the development of an automatic interpretation technique for potential field data.

Geophysics ◽  
2009 ◽  
Vol 74 (3) ◽  
pp. L17-L20 ◽  
Author(s):  
G. R. Cooper

Horizontal and vertical gradients, and filters based on them (such as the analytic signal), are used routinely to enhance detail in aeromagnetic data. However, when the data contain anomalies with a large range of amplitudes, the filtered data also will contain large and small amplitude responses, making the latter hard to see. This study suggests balancing the analytic signal amplitude (sometimes called the total gradient) by the use of its orthogonal Hilbert transforms, and shows that the balanced profile curvature can be an effective method of enhancing potential-field data. Source code is available from the author on request.


2011 ◽  
Vol 54 (4) ◽  
pp. 551-559 ◽  
Author(s):  
Yao LUO ◽  
Ming WANG ◽  
Feng LUO ◽  
Song TIAN

2020 ◽  
Author(s):  
Mateusz Mikołajczak ◽  
Jan Barmuta ◽  
Małgorzata Ponikowska ◽  
Stanislaw Mazur ◽  
Krzysztof Starzec

<p>The Silesian Nappe in the westernmost part of the Polish Outer Carpathians Fold and Thrust Belt exhibits simple, almost homoclinal character. Based on the field observations, a total stratigraphic thickness of this sequence equals to at least 5400 m. On the other hand, the published maps of the sub-Carpathian basement show its top at depths no greater than 3000 m b.s.l. or even 2000 m b.s.l. in the southern part of the Silesian Nappe. Assuming no drastic thickness variations within the sedimentary sequence of the Silesian Nappe, such estimates of the basement depth are inconsistent with the known thickness of the Silesian sedimentary succession. The rationale behind our work was to resolve this inconsistency and verify the actual depth and structure of the sub-Carpathian crystalline basement along two regional cross-sections. In order to achieve this goal, a joint 2D quantitative interpretation of gravity and magnetic data was performed along these regional cross-sections. The interpretation was supported by the qualitative analysis of magnetic and gravity maps and their derivatives to recognize structural features in the sub-Carpathian basement. The study was concluded with the 3D residual gravity inversion for the top of basement. The cross-sections along with the borehole data available from the area were applied to calibrate the inversion.</p><p>In the westernmost part of the Polish Outer Carpathians, the sub-Carpathian basement comprises part of the Brunovistulian Terrane. Because of great depths, the basement structure was investigated mainly by geophysical, usually non-seismic, methods. However, some deep boreholes managed to penetrate the basement that is composed of Neoproterozoic metamorphic and igneous rocks. The study area is located within the Upper Silesian block along the border between Poland and Czechia. There is a basement uplift as known mainly from boreholes, but the boundaries and architecture of this uplift are poorly recognized. Farther to the south, the top of the Neoproterozoic is buried under a thick cover of lower Palaeozoic sediments and Carpathian nappes.</p><p>Our integrative study allowed to construct a three-dimensional map for the top of basement the depth of which increases from about 1000 m to over 7000 m b.s.l. in the north and south of the study area, respectively. Qualitative analysis of magnetic and gravity data revealed the presence of some  basement-rooted faults delimiting the extent of the uplifted basement. The interpreted faults are oriented mainly towards NW-SE and NE-SW. Potential field data also document the correlation between the main basement steps and important thrust faults.</p><p> </p><p>This work has been funded by the Polish National Science Centre grant no UMO-2017/25/B/ST10/01348</p>


2016 ◽  
Vol 59 (4) ◽  
pp. 341-349
Author(s):  
YAN Ting-Jie ◽  
WU Yan-Gang ◽  
YUAN Yuan ◽  
CHEN Ling-Na

Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1346-1346

When we sent the last revision of our paper to Geophysics, we had not yet received the March‐April 1996 issue of Geophysics and read the paper by Hsu et al. Thereby it could not be included in the references used to assess the method and write the paper. We note some convergences between the two approaches despite the fact that the depth computation algorithms are quite different.


2022 ◽  
Vol 9 ◽  
Author(s):  
José P. Calderón ◽  
Luis A. Gallardo

Potential field data have long been used in geophysical exploration for archeological, mineral, and reservoir targets. For all these targets, the increased search of highly detailed three-dimensional subsurface volumes has also promoted the recollection of high-density contrast data sets. While there are several approaches to handle these large-scale inverse problems, most of them rely on either the extensive use of high-performance computing architectures or data-model compression strategies that may sacrifice some level of model resolution. We posit that the superposition and convolutional properties of the potential fields can be easily used to compress the information needed for data inversion and also to reduce significantly redundant mathematical computations. For this, we developed a convolution-based conjugate gradient 3D inversion algorithm for the most common types of potential field data. We demonstrate the performance of the algorithm using a resolution test and a synthetic experiment. We then apply our algorithm to gravity and magnetic data for a geothermal prospect in the Acoculco caldera in Mexico. The resulting three-dimensional model meaningfully determined the distribution of the existent volcanic infill in the caldera as well as the interrelation of various intrusions in the basement of the area. We propose that these intrusive bodies play an important role either as a low-permeability host of the heated fluid or as the heat source for the potential development of an enhanced geothermal system.


Sign in / Sign up

Export Citation Format

Share Document