On the theory of sea‐floor conductivity mapping using transient electromagnetic systems

Geophysics ◽  
1987 ◽  
Vol 52 (2) ◽  
pp. 204-217 ◽  
Author(s):  
S. J. Cheesman ◽  
R. N. Edwards ◽  
A. D. Chave

The electrical conductivity of the sea floor is usually much less than that of the seawater above it. A theoretical study of the transient step‐on responses of some common controlled‐source, electromagnetic systems to adjoining conductive half‐spaces shows that two systems, the horizontal, in‐line, electric dipole‐dipole and horizontal, coaxial, magnetic dipole‐dipole, are capable of accurately measuring the relatively low conductivity of the sea floor in the presence of seawater. For these systems, the position in time of the initial transient is indicative of the conductivity of the sea floor, while at distinctly later times, a second characteristic of the transient is a measure of the seawater conductivity. The diagnostic separation in time between the two parts of the transient response does not occur for many other systems, including several systems commonly used for exploration on land. A change in the conductivity of the sea floor produces a minor perturbation in what is essentially a seawater response. Some transient responses which could be observed with a practical, deep‐towed coaxial magnetic dipole‐dipole system located near the sea floor are those for half‐space, the layer over a conductive or resistive basement, and the half‐space with an intermediate resistive zone. The system response to two adjoining half‐spaces, representing seawater and sea floor, respectively, is derived analytically. The solution is valid for all time, provided the conductivity ratio is greater than about ten, or less than about one‐tenth. The analytic theory confirms the validity of numerical evaluations of closed‐form solutions to these layered‐earth models. A lateral conductor such as a vertical, infinite, conductive dike outcropping at the sea floor delays the arrival of the initial crustal transient response. The delay varies linearly with the conductance of the dike. This suggests that time delay could be inverted directly to give a measure of the anomalous integrated conductance of the sea floor both between and in the vicinity of the transmitter and the receiver dipoles.

Geophysics ◽  
1988 ◽  
Vol 53 (6) ◽  
pp. 846-853 ◽  
Author(s):  
R. N. Edwards

Towed in‐line transient electric dipole‐dipole systems are being used to map the electrical conductivity of the sea floor. The characteristic response of a double half‐space model representing conductive seawater and less conductive crustal material to a dipole‐dipole system located at the interface consists of two distinct parts. As time in the transient measurements progresses, two changes in field strength are observed. The first change is caused by the diffusion of the electromagnetic field through the resistive sea floor; the second is caused by diffusion through the seawater. The characteristic times at which the two events occur are measures of sea‐floor and seawater conductivity, respectively. Entirely equivalent responses are observed in a frequency‐domain measurement as frequency is swept from high to low. The simple double half‐space response is modified when the towed array crosses over a conductivity anomaly. I evaluate the magnitude of the anomalous response as a function of delay time and frequency using a two‐dimensional theory and a vertical, plate‐like target. If the ratio of the conductivity of the seawater to that of the sea floor is greater than unity, then an optimum time delay or frequency can be found which maximizes the response. For large conductivity contrasts, the optimum response is greater than the response at late time or zero frequency by a factor of the order of the conductivity ratio.


Geophysics ◽  
1983 ◽  
Vol 48 (6) ◽  
pp. 790-791 ◽  
Author(s):  
A. P. Raiche

In a recent paper, Lee (1981) developed an asymptotic formula for the coincident loop transient electromagnetic (TEM) response of a polarizable half‐space having a Cole‐Cole impedance. By using parameters corresponding to three different mineral deposits, Lee showed that negative transients would be obtained for delay times of 0.4 to 1.1 msec. The method developed by Knight and Raiche (1982) to calculate the transient response of layered earths was used to check these results for three reasons.


2017 ◽  
Vol 4 (1) ◽  
pp. 1410986
Author(s):  
T. Rouibah ◽  
A. Bayadi ◽  
N. Harid ◽  
K. Kerroum ◽  
Farrokh Aminifar

Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. E481-E491 ◽  
Author(s):  
Andrei Swidinsky ◽  
Misac Nabighian

Electromagnetic surveys using a vertical transmitter loop are common in land, marine, and airborne geophysical exploration. Most of these horizontal magnetic dipole (HMD) systems operate in the frequency domain, measuring the time derivative of the induced magnetic fields, and therefore a majority of studies have focused on this subset of field measurements. We examine the time-domain electromagnetic response of a HMD including the electric fields and corresponding smoke rings produced in a conductive half-space. Cases of a dipole at the surface and buried within the earth are considered. Results indicate that when the current in the transmitter is rapidly switched off, a single smoke ring is produced within the plane of the vertical transmitter loop, which is then distorted by the air-earth interface. In this situation, the circular smoke ring, which would normally diffuse symmetrically away from the source in a whole space, is approximately transformed into an ellipse, with a vertical major axis at an early time and a horizontal major axis at a late time. As measured from the location of the transmitter, the depth of investigation and lateral footprint of such a system increases with burial depth. It is also observed that the electric field measured in the direction of the magnetic dipole only contains a secondary response related to the charge accumulation on any horizontal conductivity boundaries because the primary field is always absent. This field component can be expressed analytically in terms of a static and time-varying field, the latter term adding spatial complexity to the total horizontal electric field at the earth surface at early times. Applications of this theoretical study include the design of time-domain induction-logging tools, crossborehole electromagnetic surveys, underground mine expansion work, mine rescue procedures, and novel marine electromagnetic experiments.


Sign in / Sign up

Export Citation Format

Share Document