An analytical approach to migration velocity analysis

Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1238-1249 ◽  
Author(s):  
Zhenyue Liu

Prestack depth migration provides a powerful tool for velocity analysis in complex media. Both prominent approaches to velocity analysis—depth‐focusing analysis and residual‐curvature analysis, rely on approximate formulas to update velocity. Generally, these formulas are derived under the assumptions of horizontal reflector, lateral velocity homogeneity, or small offset. Therefore, the conventional methods for updating velocity lack accuracy and computational efficiency when velocity has large, lateral variations. Here, based on ray theory, I find the analytic representation for the derivative of imaged depths with respect to migration velocity. This derivative function characterizes a general relationship between residual moveout and residual velocity. Using the derivative function and the perturbation method, I derive a new formula to update velocity from residual moveout. In the derivation, I impose no limitation on offset, dip, or velocity distribution. Consequently, I revise the residual‐curvature‐analysis method for velocity estimation in the postmigrated domain. Furthermore, my formula provides sensitivity and error estimation for migration‐based velocity analysis, which is helpful in quantifying the reliability of the estimated velocity. The theory and methodology in this paper have been tested on synthetic data (including the Marmousi data).

Geophysics ◽  
2005 ◽  
Vol 70 (3) ◽  
pp. U19-U27 ◽  
Author(s):  
Paul C. Sava ◽  
Biondo Biondi ◽  
John Etgen

We propose a method for estimating interval velocity using the kinematic information in defocused diffractions and reflections. We extract velocity information from defocused migrated events by analyzing their residual focusing in physical space (depth and midpoint) using prestack residual migration. The results of this residual-focusing analysis are fed to a linearized inversion procedure that produces interval velocity updates. Our inversion procedure uses a wavefield-continuation operator linking perturbations of interval velocities to perturbations of migrated images, based on the principles of wave-equation migration velocity analysis introduced in recent years. We measure the accuracy of the migration velocity using a diffraction-focusing criterion instead of the criterion of flatness of migrated common-image gathers that is commonly used in migration velocity analysis. This new criterion enables us to extract velocity information from events that would be challenging to use with conventional velocity analysis methods; thus, our method is a powerful complement to those conventional techniques. We demonstrate the effectiveness of the proposed methodology using two examples. In the first example, we estimate interval velocity above a rugose salt top interface by using only the information contained in defocused diffracted and reflected events present in zero-offset data. By comparing the results of full prestack depth migration before and after the velocity updating, we confirm that our analysis of the diffracted events improves the velocity model. In the second example, we estimate the migration velocity function for a 2D, zero-offset, ground-penetrating radar data set. Depth migration after the velocity estimation improves the continuity of reflectors while focusing the diffracted energy.


Geophysics ◽  
2008 ◽  
Vol 73 (6) ◽  
pp. S241-S249 ◽  
Author(s):  
Xiao-Bi Xie ◽  
Hui Yang

We have derived a broadband sensitivity kernel that relates the residual moveout (RMO) in prestack depth migration (PSDM) to velocity perturbations in the migration-velocity model. We have compared the kernel with the RMO directly measured from the migration image. The consistency between the sensitivity kernel and the measured sensitivity map validates the theory and the numerical implementation. Based on this broadband sensitivity kernel, we propose a new tomography method for migration-velocity analysis and updating — specifically, for the shot-record PSDM and shot-index common-image gather. As a result, time-consuming angle-domain analysis is not required. We use a fast one-way propagator and multiple forward scattering and single backscattering approximations to calculate the sensitivity kernel. Using synthetic data sets, we can successfully invert velocity perturbations from the migration RMO. This wave-equation-based method naturally incorporates the wave phenomena and is best teamed with the wave-equation migration method for velocity analysis. In addition, the new method maintains the simplicity of the ray-based velocity analysis method, with the more accurate sensitivity kernels replacing the rays.


Geophysics ◽  
2006 ◽  
Vol 71 (3) ◽  
pp. U21-U28 ◽  
Author(s):  
Weihong Fei ◽  
George A. McMechan

A new migration velocity analysis is developed by combining the speed of parsimonious prestack depth migration with velocity adjustments estimated within and across common-reflection-point (CRP) gathers. The proposed approach is much more efficient than conventional tomographic velocity analysis because only the traces that contribute to a series of CRP gathers are depth migrated at each iteration. The local interval-velocity adjustments for each CRP are obtained by maximizing the stack amplitude over the predicted (nonhyperbolic) moveout in each CRP gather; this does not involve retracing rays. At every iteration, the velocity in each pixel is updated by averaging over all the predicted velocity updates. Finally, CRP positions and orientations are updated by parsimonious migration, and rays are retraced to define new CRP gathers for the next iteration; this ensures internal consistency between the updated velocity model and the CRP gather. Because the algorithm has a gridded-model parameterization, no explicit representation or fitting of reflectors is involved. Strong lateral-velocity variations, such as those found at salt flanks, can be handled. Application to synthetic and field data sets show that the proposed algorithm works effectively and efficiently.


Geophysics ◽  
2006 ◽  
Vol 71 (5) ◽  
pp. S161-S167 ◽  
Author(s):  
Weihong Fei ◽  
George A. McMechan

Three-dimensional prestack depth migration and depth residual picking in common-image gathers (CIGs) are the most time-consuming parts of 3D migration velocity analysis. Most migration-based velocity analysis algorithms need spatial coordinates of reflection points and CIG depth residuals at different offsets (or angles) to provide updated velocity information. We propose a new algorithm that can analyze 3D velocity quickly and accurately. Spatial coordinates and orientations of reflection points are provided by a 3D prestack parsimonious depth migration; the migration involves only the time samples picked from the salient reflection events on one 3D common-offset volume. Ray tracing from the reflection points to the surface provides a common-reflection-point (CRP) gather for each reflection point. Predicted (nonhyperbolic) moveouts for local velocity perturbations, based on maximizing the stacked amplitude, give the estimated velocity updates for each CRP gather. Then the velocity update for each voxel in the velocity model is obtained by averaging over all predicted velocity updates for that voxel. Prior model constraints may be used to stabilize velocity updating. Compared with other migration velocity analyses, the traveltime picking is limited to only one common-offset volume (and needs to be done only once); there is no need for intensive 3D prestack depth migration. Hence, the computation time is orders of magnitude less than other migration-based velocity analyses. A 3D synthetic data test shows the algorithm works effectively and efficiently.


Geophysics ◽  
1995 ◽  
Vol 60 (1) ◽  
pp. 142-153 ◽  
Author(s):  
Zhenyue Liu ◽  
Norman Bleistein

Imaging complex structures inside the earth requires reasonable velocities that can be provided by applying prestack depth migration to multichannel seismic data. Migration velocity analysis is based on the principle that the images in the migrated data will be distorted when an erroneous velocity is used, and the difference of the imaged depths (residual moveout) at a common image gather is a measure of the error in the velocity. The imaging equations that we derive from Snell’s law describe a general, quantitative relationship between migration images and migration velocity. Based on the imaging equations, we analyze properties of common‐image gathers and derive analytical formulas to represent residual moveout in some cases. These formulas show what factors affect the sensitivity of velocity analysis, which is useful to assess errors involved in velocity estimates. In addition, we develop a simple‐iteration algorithm to correct the layer velocities from residual moveout. The algorithm presented here is applicable to a medium that consists of constant‐velocity layers separated by arbitrary smooth interfaces. Some computer implementations are presented for both synthetic data and physical‐tank data. They demonstrate the effectiveness of our velocity analysis approach.


Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1202-1212 ◽  
Author(s):  
Hervé Chauris ◽  
Mark S. Noble ◽  
Gilles Lambaré ◽  
Pascal Podvin

We present a new method based on migration velocity analysis (MVA) to estimate 2‐D velocity models from seismic reflection data with no assumption on reflector geometry or the background velocity field. Classical approaches using picking on common image gathers (CIGs) must consider continuous events over the whole panel. This interpretive step may be difficult—particularly for applications on real data sets. We propose to overcome the limiting factor by considering locally coherent events. A locally coherent event can be defined whenever the imaged reflectivity locally shows lateral coherency at some location in the image cube. In the prestack depth‐migrated volume obtained for an a priori velocity model, locally coherent events are picked automatically, without interpretation, and are characterized by their positions and slopes (tangent to the event). Even a single locally coherent event has information on the unknown velocity model, carried by the value of the slope measured in the CIG. The velocity is estimated by minimizing these slopes. We first introduce the cost function and explain its physical meaning. The theoretical developments lead to two equivalent expressions of the cost function: one formulated in the depth‐migrated domain on locally coherent events in CIGs and the other in the time domain. We thus establish direct links between different methods devoted to velocity estimation: migration velocity analysis using locally coherent events and slope tomography. We finally explain how to compute the gradient of the cost function using paraxial ray tracing to update the velocity model. Our method provides smooth, inverted velocity models consistent with Kirchhoff‐type migration schemes and requires neither the introduction of interfaces nor the interpretation of continuous events. As for most automatic velocity analysis methods, careful preprocessing must be applied to remove coherent noise such as multiples.


Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. U87-U96 ◽  
Author(s):  
Mamoru Takanashi ◽  
Ilya Tsvankin

One of the most serious problems in anisotropic velocity analysis is the trade-off between anisotropy and lateral heterogeneity, especially if velocity varies on a scale smaller than the maximum offset. We have developed a P-wave MVA (migration velocity analysis) algorithm for transversely isotropic (TI) models that include layers with small-scale lateral heterogeneity. Each layer is described by constant Thomsen parameters [Formula: see text] and [Formula: see text] and the symmetry-direction velocity [Formula: see text] that varies as a quadratic function of the distance along the layer boundaries. For tilted TI media (TTI), the symmetry axis is taken orthogonal to the reflectors. We analyzed the influence of lateral heterogeneity on image gathers obtained after prestack depth migration and found that quadratic lateral velocity variation in the overburden can significantly distort the moveout of the target reflection. Consequently, medium parameters beneath the heterogeneous layer(s) are estimated with substantial error, even when borehole information (e.g., check shots or sonic logs) is available. Because residual moveout in the image gathers is highly sensitive to lateral heterogeneity in the overburden, our algorithm simultaneously inverts for the interval parameters of all layers. Synthetic tests for models with a gently dipping overburden demonstrate that if the vertical profile of the symmetry-direction velocity [Formula: see text] is known at one location, the algorithm can reconstruct the other relevant parameters of TI models. The proposed approach helps increase the robustness of anisotropic velocity model-building and enhance image quality in the presence of small-scale lateral heterogeneity in the overburden.


1991 ◽  
Author(s):  
M. Turhan Taner ◽  
Richard W. Postma ◽  
Lee Lu ◽  
Edip Baysal

Sign in / Sign up

Export Citation Format

Share Document