An optimal true‐amplitude least‐squares prestack depth‐migration operator

Geophysics ◽  
1999 ◽  
Vol 64 (2) ◽  
pp. 508-515 ◽  
Author(s):  
Guy Chavent ◽  
René‐Edouard Plessix

In order to define an optimal true‐amplitude prestack depth migration for multishot and multitrace data, we develop a general methodology based on the least‐squares data misfit function associated with a forward model. The amplitude of the migrated events are restored at best for any given geometry and any given preliminary filtering and amplitude correction of the data. The migrated section is then the gradient of the cost function multiplied by a weight matrix. A study of the Hessian associated with this data misfit shows how efficiently to find a good weight matrix via the computation of only few elements of this Hessian. Thanks to this matrix, the resulting migration operator is optimal in the sense that it ensures the best possible restoration of the amplitudes among the large class of least‐squares migrations. Applied to a forward model based on Born, ray tracing, and diffracting points approximation, this optimal migration outperforms or at least equals the classic Kirchhoff formula, since the latter belongs to the class of least‐squares migrations and is only optimal for one shot and an infinite aperture. Numerical results illustrate this construction and confirm the above expectations.

Geophysics ◽  
2009 ◽  
Vol 74 (4) ◽  
pp. S67-S74 ◽  
Author(s):  
Jun Cao ◽  
Ru-Shan Wu

Wave-equation-based acquisition aperture correction in the local angle domain can improve image amplitude significantly in prestack depth migration. However, its original implementation is inefficient because the wavefield decomposition uses the local slant stack (LSS), which is demanding computationally. We propose a faster method to obtain the image and amplitude correction factor in the local angle domain using beamlet decomposition in the local wavenumber domain. For a given frequency, the image matrix in the local wavenumber domain for all shots can be calculated efficiently. We then transform the shot-summed image matrix from the local wavenumber domain to the local angle domain (LAD). The LAD amplitude correction factor can be obtained with a similar strategy. Having a calculated image and correction factor, one can apply similar acquisition aperture corrections to the original LSS-based method. For the new implementation, we compare the accuracy and efficiency of two beamlet decompositions: Gabor-Daubechies frame (GDF) and local exponential frame (LEF). With both decompositions, our method produces results similar to the original LSS-based method. However, our method can be more than twice as fast as LSS and cost only twice the computation time of traditional one-way wave-equation-based migrations. The results from GDF decomposition are superior to those from LEF decomposition in terms of artifacts, although GDF requires a little more computing time.


Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 246-255 ◽  
Author(s):  
Oong K. Youn ◽  
Hua‐wei Zhou

Depth imaging with multiples is a prestack depth migration method that uses multiples as the signal for more accurate boundary mapping and amplitude recovery. The idea is partially related to model‐based multiple‐suppression techniques and reverse‐time depth migration. Conventional reverse‐time migration uses the two‐way wave equation for the backward wave propagation of recorded seismic traces and ray tracing or the eikonal equation for the forward traveltime computation (the excitation‐time imaging principle). Consequently, reverse‐time migration differs little from most other one‐way wave equation or ray‐tracing migration methods which expect only primary reflection events. Because it is almost impossible to attenuate multiples without degrading primaries, there has been a compelling need to devise a tool to use multiples constructively in data processing rather than attempting to destroy them. Furthermore, multiples and other nonreflecting wave types can enhance boundary imaging and amplitude recovery if a full two‐way wave equation is used for migration. The new approach solves the two‐way wave equation for both forward and backward directions of wave propagation using a finite‐difference technique. Thus, it handles all types of acoustic waves such as reflection (primary and multiples), refraction, diffraction, transmission, and any combination of these waves. During the imaging process, all these different types of wavefields collapse at the boundaries where they are generated or altered. The process goes through four main steps. First, a source function (wavelet) marches forward using the full two‐way scalar wave equation from a source location toward all directions. Second, the recorded traces in a shot gather march backward using the full two‐way scalar wave equation from all receiver points in the gather toward all directions. Third, the two forward‐ and backward‐propagated wavefields are correlated and summed for all time indices. And fourth, a Laplacian image reconstruction operator is applied to the correlated image frame. This technique can be applied to all types of seismic data: surface seismic, vertical seismic profile (VSP), crosswell seismic, vertical cable seismic, ocean‐bottom cable (OBC) seismic, etc. Because it migrates all wave types, the input data require no or minimal preprocessing (demultiple should not be done, but near‐surface or acquisition‐related problems might need to be corrected). Hence, it is only a one‐step process from the raw field gathers to a final depth image. External noise in the raw data will not correlate with the forward wavefield except for some coincidental matching; therefore, it is usually unnecessary to do signal enhancement processing before the depth imaging with multiples. The input velocity model could be acquired from various methods such as iterative focusing analysis or tomography, as in other prestack depth migration methods. The new method has been applied to data sets from a simple multiple‐generating model, the Marmousi model, and a real offset VSP. The results show accurate imaging of primaries and multiples with overall significant improvements over conventionally imaged sections.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE13-VE23 ◽  
Author(s):  
Frank Adler ◽  
Reda Baina ◽  
Mohamed Amine Soudani ◽  
Pierre Cardon ◽  
Jean-Baptiste Richard

Velocity-model estimation with seismic reflection tomography is a nonlinear inverse problem. We present a new method for solving the nonlinear tomographic inverse problem using 3D prestack-depth-migrated reflections as the input data, i.e., our method requires that prestack depth migration (PSDM) be performed before tomography. The method is applicable to any type of seismic data acquisition that permits seismic imaging with Kirchhoff PSDM. A fundamental concept of the method is that we dissociate the possibly incorrect initial migration velocity model from the tomographic velocity model. We take the initial migration velocity model and the residual moveout in the associated PSDM common-image gathers as the reference data. This allows us to consider the migrated depth of the initial PSDM as the invariant observation for the tomographic inverse problem. We can therefore formulate the inverse problem within the general framework of inverse theory as a nonlinear least-squares data fitting between observed and modeled migrated depth. The modeled migrated depth is calculated by ray tracing in the tomographic model, followed by a finite-offset map migration in the initial migration model. The inverse problem is solved iteratively with a Gauss-Newton algorithm. We applied the method to a North Sea data set to build an anisotropic layer velocity model.


Geophysics ◽  
2004 ◽  
Vol 69 (1) ◽  
pp. 249-256 ◽  
Author(s):  
Jing Chen

The Kirchhoff‐type prestack depth migration operator is a diffraction stack of seismic reflection energies over seismic traces. Typically, the diffraction stack is carried out over the full data aperture, producing not only images of reflectors but also aliasing artifacts. Aliasing artifacts often break reflector continuity in images. The stationary‐phase approximation to the migration operator shows that, for image points on reflectors, traces within the neighborhood of specular rays contribute most to the diffraction stack. Traces outside this vicinity introduce aliasing artifacts into the image, especially in the case of coarse trace spacing and aperture truncation. A new migration algorithm, denoted as stationary‐phase migration, is proposed to find the specular ray parameters and then to migrate the specular‐ray energies and reject nonspecular ray energies to yield images with less aliasing.


2020 ◽  
Author(s):  
Zhe Jin ◽  
Xiangjun Tian

<p>In this study, we apply the nonlinear least squares four-dimensional variational (NLS-4DVar) method to the retrieval of the column-averaged dry air mole fraction of carbon dioxide (X<sub>CO2</sub> ) from the Orbiting Carbon Observatory-2 (OCO-2) satellite observations. The NLS-4DVar method avoids the computation of the tangent linear and adjoint models of the forward model, which reduces the computational and implementation complexity greatly. We use the forward model from the Atmospheric CO<sub>2</sub> Observations from Space (ACOS) X<sub>CO2</sub> retrieval algorithm. The inverse model is constructed of two parts, generating samples and minimizing the cost function. For the CO<sub>2</sub> profile, we apply an improved sampling algorithm based on ensemble singular value decomposition (SVD). For the other elements in the state vector, we apply a sampling algorithm based on normal distributions, and values of standard deviations of normal distributions are vital to the accuracy of retrieval. To minimize the cost function, the NLS-4Dvar method rewrite it into a nonlinear least squares problem, and solve it by a Gauss-Newton iterative method. We have tested our method in summer and winter at four sites through observing system simulation experiments, which are Lamont, Bremen, Wollongong and an ocean site in the North Pacific respectively. All the four sites show an improved X<sub>CO2</sub> and CO<sub>2</sub> profile after the retrieval.</p>


Geophysics ◽  
2000 ◽  
Vol 65 (4) ◽  
pp. 1223-1238 ◽  
Author(s):  
M. Stéphane Operto ◽  
Sheng Xu ◽  
Gilles Lambaré

Ray‐based prestack depth migration fails to image quantitatively complex structures when a single arrival—for example, the first or the strongest one—is taken into account. In this paper, we investigate whether accounting for multiple arrivals in ray‐based preserved amplitude prestack depth migration allows one to improve quantitative imaging of complex media. The asymptotic ray‐Born migration/inversion, originally designed to process one single arrival, is extended to the case of multiple arrivals by accounting for the cross‐contributions of all the source and receiver raypaths. Multiple arrivals in the folded ray fields are computed by a dynamic ray tracing based on a wavefront construction technique. With an application to the complex Marmousi model, we demonstrate that ray‐Born inversion can provide a reliable quantitative estimation of the relative impedance perturbation even in the complex deep part of the model, for which the amplitudes were underestimated drastically when only a single arrival was used, either the first or the strongest one. This 2-D case study shows that complex structures can be imaged quantitatively with rays. Future studies will require the optimizing of the implementation of ray‐Born migration/inversion with multiple arrivals before considering 3-D applications.


Sign in / Sign up

Export Citation Format

Share Document