3D pre‐stack Kirchhoff time migration of PS‐waves and migration velocity model building

Author(s):  
Hengchang Dai ◽  
Xiang‐Yang Li ◽  
Paul Conway
Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. S229-S238 ◽  
Author(s):  
Martina Glöckner ◽  
Sergius Dell ◽  
Benjamin Schwarz ◽  
Claudia Vanelle ◽  
Dirk Gajewski

To obtain an image of the earth’s subsurface, time-imaging methods can be applied because they are reasonably fast, are less sensitive to velocity model errors than depth-imaging methods, and are usually easy to parallelize. A powerful tool for time imaging consists of a series of prestack time migrations and demigrations. We have applied multiparameter stacking techniques to obtain an initial time-migration velocity model. The velocity model building proposed here is based on the kinematic wavefield attributes of the common-reflection surface (CRS) method. A subsequent refinement of the velocities uses a coherence filter that is based on a predetermined threshold, followed by an interpolation and smoothing. Then, we perform a migration deconvolution to obtain the final time-migrated image. The migration deconvolution consists of one iteration of least-squares migration with an estimated Hessian. We estimate the Hessian by nonstationary matching filters, i.e., in a data-driven fashion. The model building uses the framework of the CRS, and the migration deconvolution is fully automated. Therefore, minimal user interaction is required to carry out the velocity model refinement and the image update. We apply the velocity refinement and migration deconvolution approaches to complex synthetic and field data.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE211-VE216 ◽  
Author(s):  
Jacobus Buur ◽  
Thomas Kühnel

Many production targets in greenfield exploration are found in salt provinces, which have highly complex structures as a result of salt formation over geologic time. Difficult geologic settings, steep dips, and other wave-propagation effects make reverse-time migration (RTM) the migration method of choice, rather than Kirchhoff migration or other (by definition approximate) one-way equation methods. Imaging of the subsurface using any depth-migration algorithm can be done successfully only when the quality of the prior velocity model is sufficient. The (velocity) model-building loop is an iterative procedure for improving the velocity model. This is done by obtaining certain measurements (residual moveout) on image gathers generated during the migration procedure; those measurements then are input into tomographic updating. Commonly RTM is applied around salt bodies, where building the velocity model fails essentially because tomography is ray-trace based. Our idea is to apply RTM directly inside the model-building loop but to do so without using the image gathers. Although the process is costly, we migrate the full frequency content of the data to create a high-quality stack. This enhances the interpretation of top and bottom salt significantly and enables us to include the resulting salt geometry in the velocity model properly. We demonstrate our idea on a 2D West Africa seismic line. After several model-building iterations, the result is a dramatically improved velocity model. With such a good model as input, the final RTM confirms the geometry of the salt bodies and basically the salt interpretation, and yields a compelling image of the subsurface.


Geophysics ◽  
2017 ◽  
Vol 82 (1) ◽  
pp. T17-T26 ◽  
Author(s):  
Qihua Li ◽  
Xiaofeng Jia

The staining algorithm is introduced to improve the signal-to-noise ratio (S/N) of poorly illuminated subsurface structures in seismic imaging. However, the amplitudes of the original and the stained wavefield, i.e., the real and the imaginary wavefields, differ by several orders of magnitude, and the waveform of the stained wavefield may be greatly distorted. We have developed a generalized staining algorithm (GSA) to achieve amplitude preservation in the stained wavefield. The real wavefield and the stained wavefield propagate in the same velocity model. A source wavelet is used as the source of the real wavefield; however, the real wavefield is extracted from the stained area as the source of the stained wavefield. The GSA maintains some properties of the original staining algorithm. The stained wavefield is synchronized with the real wavefield, and it contains only information relevant to the target region. By imaging with the stained wavefield, we obtain higher S/Ns in images of target structures. The most significant advantage of our method is the amplitude preservation of the stained wavefield, which means that this method could potentially be used in quantitative illumination analysis and velocity model building. The GSA could be adopted easily for frequency-domain wavefield propagators and time-domain propagators. Furthermore, the GSA can generate any number of stained wavefields. Numerical experiments demonstrate these features of the GSA, and we apply this method in target-oriented modeling and imaging as well as obtaining amplitude-preserved stained wavefields and higher S/Ns in images of target structures.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB169-WB174 ◽  
Author(s):  
Shuo Ji ◽  
Tony Huang ◽  
Kang Fu ◽  
Zhengxue Li

For deep-water Gulf of Mexico, accurate salt geometry is critical to subsalt imaging. This requires the definition of both external and internal salt geometries. In recent years, external salt geometry (i.e., boundaries between allochthonous salt and background sediment) has improved a great deal due to advances in acquisition, velocity model building, and migration algorithms. But when it comes to defining internal salt geometry (i.e., intrasalt inclusions or dirty salt), no efficient method has yet been developed. In common industry practices, intrasalt inclusions (and thus their velocity anomalies) are generally ignored during the model building stages. However, as external salt geometries reach higher levels of accuracy, it becomes more important to consider the once-ignored effects of dirty salt. We have developed a reflectivity-based approach for dirty salt velocity inversion. This method takes true-amplitude reverse time migration stack volumes as input, then estimates the dirty salt velocity based on reflectivity under a 1D assumption. Results from a 2D synthetic data set and a real 3D Wide Azimuth data set demonstrated that the reflectivity inversion scheme significantly improves the subsalt image for certain areas. In general, we believe that this method produces a better salt model than the traditional clean salt velocity approach.


Sign in / Sign up

Export Citation Format

Share Document