Imaging reflection-blind areas using transmitted PS-waves

Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. S241-S250 ◽  
Author(s):  
Yi Luo ◽  
Qinglin Liu ◽  
Yuchun E. Wang ◽  
Mohammed N. AlFaraj

We illustrate the use of mode-converted transmitted (e.g., PS- or SP-) waves in vertical seismic profiling (VSP) data for imaging areas above receivers where reflected waves cannot illuminate. Three depth-domain imaging techniques — move-out correction, common-depth-point (CDP) mapping, and prestack migration — are described and used for imag-ing the transmitted waves. Moveout correction converts an offset VSP trace into a zero-offset trace. CDP mapping maps each sample on an input trace to the location where the mode conversion occurs. For complex media, prestack migration (e.g., reverse-time migration) is used. By using both synthetic and field VSP data, we demonstrate that images derived from transmissions complement those from reflections. As an important application, we show that transmitted waves can illuminate zones above highly de-viated or horizontal wells, a region not imaged by reflection data. Because all of these benefits are obtained without extra data acquisition cost, we believe transmission imag-ing techniques will become widely adopted by the oil in-dustry.

Author(s):  
K. Hokstad ◽  
R. Mittet ◽  
M. Landrø

Geophysics ◽  
1993 ◽  
Vol 58 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Zhengxin Dong ◽  
George A. McMechan

A three‐dimensional (3-D) prestack reverse‐time migration algorithm for common‐source P‐wave data from anisotropic media is developed and illustrated by application to synthetic data. Both extrapolation of the data and computation of the excitation‐time imaging condition are implemented using a second‐order finite‐ difference solution of the 3-D anisotropic scalar‐wave equation. Poorly focused, distorted images are obtained if data from anisotropic media are migrated using isotropic extrapolation; well focused, clear images are obtained using anisotropic extrapolation. A priori estimation of the 3-D anisotropic velocity distribution is required. Zones of anomalous, directionally dependent reflectivity associated with anisotropic fracture zones are detectable in both the 3-D common‐ source data and the corresponding migrated images.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. Q15-Q26 ◽  
Author(s):  
Giovanni Angelo Meles ◽  
Kees Wapenaar ◽  
Andrew Curtis

State-of-the-art methods to image the earth’s subsurface using active-source seismic reflection data involve reverse time migration. This and other standard seismic processing methods such as velocity analysis provide best results only when all waves in the data set are primaries (waves reflected only once). A variety of methods are therefore deployed as processing to predict and remove multiples (waves reflected several times); however, accurate removal of those predicted multiples from the recorded data using adaptive subtraction techniques proves challenging, even in cases in which they can be predicted with reasonable accuracy. We present a new, alternative strategy to construct a parallel data set consisting only of primaries, which is calculated directly from recorded data. This obviates the need for multiple prediction and removal methods. Primaries are constructed by using convolutional interferometry to combine the first-arriving events of upgoing and direct-wave downgoing Green’s functions to virtual receivers in the subsurface. The required upgoing wavefields to virtual receivers are constructed by Marchenko redatuming. Crucially, this is possible without detailed models of the earth’s subsurface reflectivity structure: Similar to the most migration techniques, the method only requires surface reflection data and estimates of direct (nonreflected) arrivals between the virtual subsurface sources and the acquisition surface. We evaluate the method on a stratified synclinal model. It is shown to be particularly robust against errors in the reference velocity model used and to improve the migrated images substantially.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. S399-S408 ◽  
Author(s):  
Yunyue Elita Li ◽  
Yue Du ◽  
Jizhong Yang ◽  
Arthur Cheng ◽  
Xinding Fang

Elastic wave imaging has been a significant challenge in the exploration industry due to the complexities in wave physics and numerical implementation. We have separated the governing equations for P- and S-wave propagation without the assumptions of homogeneous Lamé parameters to capture the mode conversion between the two body waves in an isotropic, constant-density medium. The resulting set of two coupled second-order equations for P- and S-potentials clearly demonstrates that mode conversion only occurs at the discontinuities of the shear modulus. Applying the Born approximation to the new equations, we derive the PP, PS, SP, and SS imaging conditions from the first gradients of waveform matching objective functions. The resulting images are consistent with the physical perturbations of the elastic parameters, and, hence, they are automatically free of the polarity reversal artifacts in the converted images. When implementing elastic reverse time migration (RTM), we find that scalar wave equations can be used to back propagate the recorded P-potential, as well as individual components in the vector field of the S-potential. Compared with conventional elastic RTM, the proposed elastic RTM implementation using acoustic propagators not only simplifies the imaging condition, it but also reduces the computational cost and the artifacts in the images. We have determined the accuracy of our method using 2D and 3D numerical examples.


2021 ◽  
Author(s):  
Herurisa Rusmanugroho ◽  
Makky Sandra Jaya ◽  
M Hafizal Zahir ◽  
M Faizal Rahim

Abstract The performance of pre-stack depth migration (PSDM) on the fiber optic, distributed acoustic sensing (DAS), vertical seismic profile (VSP) data has rarely been reported. We show the results of PSDM for the fiber optic cables, newly developed and tested at a field in Canada. We apply Kirchhoff migration, Fresnel volume migration and reverse time migration (RTM) to the walkway VSP data to obtain high resolution images of the shallow to deeper structures and provide the performance analysis of the migration methods for the DAS VSP data.


Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. S155-S166 ◽  
Author(s):  
Feng Deng ◽  
George A. McMechan

Most current true-amplitude migrations correct only for geometric spreading. We present a new prestack depth-migration method that uses the framework of reverse-time migration to compensate for geometric spreading, intrinsic [Formula: see text] losses, and transmission losses. Geometric spreading is implicitly compensated by full two-way wave propagation. Intrinsic [Formula: see text] losses are handled by including a [Formula: see text]-dependent term in the wave equation. Transmission losses are compensated based on an estimation of angle-dependent reflectivity using a two-pass recursive reverse-time prestack migration. The image condition used is the ratio of receiver/source wavefield amplitudes. Two-dimensional tests using synthetic data for a dipping-layer model and a salt model show that loss-compensating prestack depth migration can produce reliable angle-dependent reflection coefficients at the target. The reflection coefficient curves are fitted to give least-squares estimates of the velocity ratio at the target. The main new result is a procedure for transmission compensation when extrapolating the receiver wavefield. There are still a number of limitations (e.g., we use only scalar extrapolation for illustration), but these limitations are now better defined.


2016 ◽  
Vol 34 (3) ◽  
Author(s):  
Antonio Edson Lima de Oliveira ◽  
Reynam Da Cruz Pestana ◽  
Adriano Wagner Gomes dos Santos

ABSTRACT. One of the major limitations of imaging methods is, usually, the incomplete recorded seismic data that cause difficulties for the subsurface imaging techniques...Keywords: seismic imaging, resolution, modeling, iterative method, computational coast. RESUMO. Uma das limitações das técnicas de imageamento é que, via de regra, os dados sísmicos registrados são incompletos. Isso impossibilita uma correta reconstituição dos refletores em subsuperfície...Palavras-chave: imageamento sísmico, resolução, modelagem, método iterativo, custo computacional.


Sign in / Sign up

Export Citation Format

Share Document