True-amplitude prestack depth migration

Geophysics ◽  
2007 ◽  
Vol 72 (3) ◽  
pp. S155-S166 ◽  
Author(s):  
Feng Deng ◽  
George A. McMechan

Most current true-amplitude migrations correct only for geometric spreading. We present a new prestack depth-migration method that uses the framework of reverse-time migration to compensate for geometric spreading, intrinsic [Formula: see text] losses, and transmission losses. Geometric spreading is implicitly compensated by full two-way wave propagation. Intrinsic [Formula: see text] losses are handled by including a [Formula: see text]-dependent term in the wave equation. Transmission losses are compensated based on an estimation of angle-dependent reflectivity using a two-pass recursive reverse-time prestack migration. The image condition used is the ratio of receiver/source wavefield amplitudes. Two-dimensional tests using synthetic data for a dipping-layer model and a salt model show that loss-compensating prestack depth migration can produce reliable angle-dependent reflection coefficients at the target. The reflection coefficient curves are fitted to give least-squares estimates of the velocity ratio at the target. The main new result is a procedure for transmission compensation when extrapolating the receiver wavefield. There are still a number of limitations (e.g., we use only scalar extrapolation for illustration), but these limitations are now better defined.

Geophysics ◽  
1993 ◽  
Vol 58 (1) ◽  
pp. 79-90 ◽  
Author(s):  
Zhengxin Dong ◽  
George A. McMechan

A three‐dimensional (3-D) prestack reverse‐time migration algorithm for common‐source P‐wave data from anisotropic media is developed and illustrated by application to synthetic data. Both extrapolation of the data and computation of the excitation‐time imaging condition are implemented using a second‐order finite‐ difference solution of the 3-D anisotropic scalar‐wave equation. Poorly focused, distorted images are obtained if data from anisotropic media are migrated using isotropic extrapolation; well focused, clear images are obtained using anisotropic extrapolation. A priori estimation of the 3-D anisotropic velocity distribution is required. Zones of anomalous, directionally dependent reflectivity associated with anisotropic fracture zones are detectable in both the 3-D common‐ source data and the corresponding migrated images.


Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 246-255 ◽  
Author(s):  
Oong K. Youn ◽  
Hua‐wei Zhou

Depth imaging with multiples is a prestack depth migration method that uses multiples as the signal for more accurate boundary mapping and amplitude recovery. The idea is partially related to model‐based multiple‐suppression techniques and reverse‐time depth migration. Conventional reverse‐time migration uses the two‐way wave equation for the backward wave propagation of recorded seismic traces and ray tracing or the eikonal equation for the forward traveltime computation (the excitation‐time imaging principle). Consequently, reverse‐time migration differs little from most other one‐way wave equation or ray‐tracing migration methods which expect only primary reflection events. Because it is almost impossible to attenuate multiples without degrading primaries, there has been a compelling need to devise a tool to use multiples constructively in data processing rather than attempting to destroy them. Furthermore, multiples and other nonreflecting wave types can enhance boundary imaging and amplitude recovery if a full two‐way wave equation is used for migration. The new approach solves the two‐way wave equation for both forward and backward directions of wave propagation using a finite‐difference technique. Thus, it handles all types of acoustic waves such as reflection (primary and multiples), refraction, diffraction, transmission, and any combination of these waves. During the imaging process, all these different types of wavefields collapse at the boundaries where they are generated or altered. The process goes through four main steps. First, a source function (wavelet) marches forward using the full two‐way scalar wave equation from a source location toward all directions. Second, the recorded traces in a shot gather march backward using the full two‐way scalar wave equation from all receiver points in the gather toward all directions. Third, the two forward‐ and backward‐propagated wavefields are correlated and summed for all time indices. And fourth, a Laplacian image reconstruction operator is applied to the correlated image frame. This technique can be applied to all types of seismic data: surface seismic, vertical seismic profile (VSP), crosswell seismic, vertical cable seismic, ocean‐bottom cable (OBC) seismic, etc. Because it migrates all wave types, the input data require no or minimal preprocessing (demultiple should not be done, but near‐surface or acquisition‐related problems might need to be corrected). Hence, it is only a one‐step process from the raw field gathers to a final depth image. External noise in the raw data will not correlate with the forward wavefield except for some coincidental matching; therefore, it is usually unnecessary to do signal enhancement processing before the depth imaging with multiples. The input velocity model could be acquired from various methods such as iterative focusing analysis or tomography, as in other prestack depth migration methods. The new method has been applied to data sets from a simple multiple‐generating model, the Marmousi model, and a real offset VSP. The results show accurate imaging of primaries and multiples with overall significant improvements over conventionally imaged sections.


Geophysics ◽  
1988 ◽  
Vol 53 (8) ◽  
pp. 1015-1023 ◽  
Author(s):  
Liang‐Zie Hu ◽  
George A. McMechan ◽  
Jerry M. Harris

Subsurface imaging with common‐source cross‐hole data can be achieved using prestack reverse‐time migration. The algorithm consists of extrapolation of the recorded wave field, application of the excitation‐time imaging condition, and postprocessing of the resulting image with a low‐pass wavenumber filter. The wavenumber filter removes the artifact associated with the direct arrival; this artifact is not separable from the scattered data before migration because, in the cross‐hole geometry, they significantly overlap in time, space, and wavenumber. Migration of synthetic data produces the best possible results, but images produced by migration of scale‐model data are not greatly inferior. Apparently, acceptable images can be obtained from a surprisingly few sources, if these sources are located sufficiently far apart to give independent information and the recording aperture is sufficiently wide.


Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. U77-U88 ◽  
Author(s):  
Qunshan Zhang ◽  
George A. McMechan

The source extrapolation step in wave-equation prestack reverse-time migration gives wavefield polarization information, which can be used to generate angle-domain common-image gathers (ADCIGs) from seismic reflection data from acoustic media. Concatenation of P-wave polarization segments gives wavefield propagation paths (“wavepaths”), which are similar to the raypaths in ray-based velocity tomography. The ADCIGs provide residual depth moveout (RMO) information, from which a system of linear equations is constructed for tomography to solve for the velocity ratio used for velocity updating. An empirical relation between the RMO data and the velocity ratio updates reduces the amount of computation, and is stabilized by the feedback provided by the iterative loop through prestack migration, to RMO, to velocity update, to prestack migration. Correcting the RMOs to flatten the ADGIGs is the convergence condition. Synthetic data for a layered model with a fault successfully illustrates the method.


2020 ◽  
Vol 38 (2) ◽  
Author(s):  
Razec Cezar Sampaio Pinto da Silva Torres ◽  
Leandro Di Bartolo

ABSTRACT. Reverse time migration (RTM) is one of the most powerful methods used to generate images of the subsurface. The RTM was proposed in the early 1980s, but only recently it has been routinely used in exploratory projects involving complex geology – Brazilian pre-salt, for example. Because the method uses the two-way wave equation, RTM is able to correctly image any kind of geological environment (simple or complex), including those with anisotropy. On the other hand, RTM is computationally expensive and requires the use of computer clusters. This paper proposes to investigate the influence of anisotropy on seismic imaging through the application of RTM for tilted transversely isotropic (TTI) media in pre-stack synthetic data. This work presents in detail how to implement RTM for TTI media, addressing the main issues and specific details, e.g., the computational resources required. A couple of simple models results are presented, including the application to a BP TTI 2007 benchmark model.Keywords: finite differences, wave numerical modeling, seismic anisotropy. Migração reversa no tempo em meios transversalmente isotrópicos inclinadosRESUMO. A migração reversa no tempo (RTM) é um dos mais poderosos métodos utilizados para gerar imagens da subsuperfície. A RTM foi proposta no início da década de 80, mas apenas recentemente tem sido rotineiramente utilizada em projetos exploratórios envolvendo geologia complexa, em especial no pré-sal brasileiro. Por ser um método que utiliza a equação completa da onda, qualquer configuração do meio geológico pode ser corretamente tratada, em especial na presença de anisotropia. Por outro lado, a RTM é dispendiosa computacionalmente e requer o uso de clusters de computadores por parte da indústria. Este artigo apresenta em detalhes uma implementação da RTM para meios transversalmente isotrópicos inclinados (TTI), abordando as principais dificuldades na sua implementação, além dos recursos computacionais exigidos. O algoritmo desenvolvido é aplicado a casos simples e a um benchmark padrão, conhecido como BP TTI 2007.Palavras-chave: diferenças finitas, modelagem numérica de ondas, anisotropia sísmica.


Geophysics ◽  
1983 ◽  
Vol 48 (11) ◽  
pp. 1514-1524 ◽  
Author(s):  
Edip Baysal ◽  
Dan D. Kosloff ◽  
John W. C. Sherwood

Migration of stacked or zero‐offset sections is based on deriving the wave amplitude in space from wave field observations at the surface. Conventionally this calculation has been carried out through a depth extrapolation. We examine the alternative of carrying out the migration through a reverse time extrapolation. This approach may offer improvements over existing migration methods, especially in cases of steeply dipping structures with strong velocity contrasts. This migration method is tested using appropriate synthetic data sets.


Geophysics ◽  
2009 ◽  
Vol 74 (5) ◽  
pp. H27-H33 ◽  
Author(s):  
Jun Ji

To reduce the migration artifacts arising from incomplete data or inaccurate operators instead of migrating data with the adjoint of the forward-modeling operator, a least-squares migration often is considered. Least-squares migration requires a forward-modeling operator and its adjoint. In a derivation of the mathematically correct adjoint operator to a given forward-time-extrapolation modeling operator, the exact adjoint of the derived operator is obtained by formulating an explicit matrix equation for the forward operation and transposing it. The programs that implement the exact adjoint operator pair are verified by the dot-product test. The derived exact adjoint operator turns out to differ from the conventional reverse-time-migration (RTM) operator, an implementation of wavefield extrapolation backward in time. Examples with synthetic data show that migration using the exact adjoint operator gives similar results for a conventional RTM operator and that least-squares RTM is quite successful in reducing most migration artifacts. The least-squares solution using the exact adjoint pair produces a model that fits the data better than one using a conventional RTM operator pair.


Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. S241-S250 ◽  
Author(s):  
Yi Luo ◽  
Qinglin Liu ◽  
Yuchun E. Wang ◽  
Mohammed N. AlFaraj

We illustrate the use of mode-converted transmitted (e.g., PS- or SP-) waves in vertical seismic profiling (VSP) data for imaging areas above receivers where reflected waves cannot illuminate. Three depth-domain imaging techniques — move-out correction, common-depth-point (CDP) mapping, and prestack migration — are described and used for imag-ing the transmitted waves. Moveout correction converts an offset VSP trace into a zero-offset trace. CDP mapping maps each sample on an input trace to the location where the mode conversion occurs. For complex media, prestack migration (e.g., reverse-time migration) is used. By using both synthetic and field VSP data, we demonstrate that images derived from transmissions complement those from reflections. As an important application, we show that transmitted waves can illuminate zones above highly de-viated or horizontal wells, a region not imaged by reflection data. Because all of these benefits are obtained without extra data acquisition cost, we believe transmission imag-ing techniques will become widely adopted by the oil in-dustry.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. S411-S423
Author(s):  
Peng Yong ◽  
Jianping Huang ◽  
Zhenchun Li ◽  
Wenyuan Liao ◽  
Luping Qu

Least-squares reverse time migration (LSRTM), an effective tool for imaging the structures of the earth from seismograms, can be characterized as a linearized waveform inversion problem. We have investigated the performance of three minimization functionals as the [Formula: see text] norm, the hybrid [Formula: see text] norm, and the Wasserstein metric ([Formula: see text] metric) for LSRTM. The [Formula: see text] metric used in this study is based on the dynamic formulation of transport problems, and a primal-dual hybrid gradient algorithm is introduced to efficiently compute the [Formula: see text] metric between two seismograms. One-dimensional signal analysis has demonstrated that the [Formula: see text] metric behaves like the [Formula: see text] norm for two amplitude-varied signals. Unlike the [Formula: see text] norm, the [Formula: see text] metric does not suffer from the differentiability issue for null residuals. Numerical examples of the application of three misfit functions to LSRTM on synthetic data have demonstrated that, compared to the [Formula: see text] norm, the hybrid [Formula: see text] norm and [Formula: see text] metric can accelerate LSRTM and are less sensitive to non-Gaussian noise. For the field data application, the [Formula: see text] metric produces the most reliable imaging results. The hybrid [Formula: see text] norm requires tedious trial-and-error tests for the judicious threshold parameter selection. Hence, the more automatic [Formula: see text] metric is recommended as a robust alternative to the customary [Formula: see text] norm for time-domain LSRTM.


Sign in / Sign up

Export Citation Format

Share Document