Influence of structural dip angles on interval velocity analysis

Geophysics ◽  
2008 ◽  
Vol 73 (4) ◽  
pp. U13-U18 ◽  
Author(s):  
Moshe Reshef ◽  
Andreas Rüger

Common scattering-angle and traditional common-offset gathers can be of limited use for interval velocity analysis in regions with complex geologic structures. In the summation process, which occurs when generating each trace in the common-image gather, vital information about structural dip is lost during prestack depth migration. This inadvertently lost data can provide important input to moveout-based velocity-updating algorithms. Maintaining this crucial dip information can improve the quality of the velocity analysis and imaging processes.

2019 ◽  
Vol 30 (1) ◽  
pp. 23-26
Author(s):  
Iyod Suherman ◽  
Taufan Wiguna ◽  
Rahadian Rahadian ◽  
Djunaedi Muljawan ◽  
Omar Moefti

The quality of seismic is important for interpretation. Prestack Depth Migration produce better quality of seismic imaging. The seismic generated through PSDM method has better seismic reflector and geological structure appearance compared to Prestack Time Migration (PSTM) method. Accurate interval velocity modeling is a key in PSDM process, involving dix transformation, coherency inversion, and tomography. Comparison between PSTM and PSDM show that PSDM offer better imaging for interpretation because PSDM has better seismic reflector continuity and good geological appearance.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. S437-S447 ◽  
Author(s):  
Jean-Philippe Montel ◽  
Gilles Lambaré

Common-image gathers are a useful output of the migration process. Their kinematic behavior (i.e., the way they curve up or down) is an indicator of the quality of the velocity model used for migration. Traditionally, when used for migration velocity analysis, we pick structural dips in the common attribute panels (offset, angle, etc.) and residual moveout (RMO) in the gathers. The measured RMO will then tell us how much we need to update the velocity model to improve the gather’s flatness. Understanding the kinematics of the picked events is the key to an accurate model update. This point has been widely underestimated in many cases. For example, when dealing with angle gathers, there is a general assumption that the associated tomographic rays are fully defined by the picked structural dips and the gather opening and azimuth angle, and that if the velocity model is correctly updated down to a given horizon, it is not necessary to shoot the tomographic rays upward through this horizon. We find through an original theoretical analysis that both of these assumptions have to be modified when the gathers exhibit RMO. Using a kinematic analysis, we determine that knowledge of the RMO slopes is necessary to compute the tomographic rays.


Geophysics ◽  
1998 ◽  
Vol 63 (2) ◽  
pp. 392-398 ◽  
Author(s):  
W.-J. Wu ◽  
L. Lines ◽  
A. Burton ◽  
H.-X. Lu ◽  
J. Zhu ◽  
...  

We produce depth images for an Alberta Foothills line by iteratively using a number of migration and velocity analysis techniques. In imaging steeply dipping layers of a foothills data set, it is apparent that thrust belt geology can violate the conventional assumptions of elevation datum corrections and common midpoint (CMP) stacking. To circumvent these problems, we use migration from topography in which we perform prestack depth migration on the data using correct source and receiver elevations. Migration from topography produces enhanced images of steep shallow reflectors when compared to conventional processing. In addition to migration from topography, we couple prestack depth migration with the continuous adjustment of velocity depth models. A number of criteria are used in doing this. These criteria require that our velocity estimates produce a focused image and that migrated depths in common image gathers be independent of source‐receiver offset. Velocity models are estimated by a series of iterative and interpretive steps involving prestack migration velocity analysis and structural interpretation. Overlays of velocity models on depth migrations should generally show consistency between velocity boundaries and reflection depths. Our preferred seismic depth section has been produced by using prestack reverse‐time depth migration coupled with careful geological interpretation.


Geophysics ◽  
2005 ◽  
Vol 70 (3) ◽  
pp. U19-U27 ◽  
Author(s):  
Paul C. Sava ◽  
Biondo Biondi ◽  
John Etgen

We propose a method for estimating interval velocity using the kinematic information in defocused diffractions and reflections. We extract velocity information from defocused migrated events by analyzing their residual focusing in physical space (depth and midpoint) using prestack residual migration. The results of this residual-focusing analysis are fed to a linearized inversion procedure that produces interval velocity updates. Our inversion procedure uses a wavefield-continuation operator linking perturbations of interval velocities to perturbations of migrated images, based on the principles of wave-equation migration velocity analysis introduced in recent years. We measure the accuracy of the migration velocity using a diffraction-focusing criterion instead of the criterion of flatness of migrated common-image gathers that is commonly used in migration velocity analysis. This new criterion enables us to extract velocity information from events that would be challenging to use with conventional velocity analysis methods; thus, our method is a powerful complement to those conventional techniques. We demonstrate the effectiveness of the proposed methodology using two examples. In the first example, we estimate interval velocity above a rugose salt top interface by using only the information contained in defocused diffracted and reflected events present in zero-offset data. By comparing the results of full prestack depth migration before and after the velocity updating, we confirm that our analysis of the diffracted events improves the velocity model. In the second example, we estimate the migration velocity function for a 2D, zero-offset, ground-penetrating radar data set. Depth migration after the velocity estimation improves the continuity of reflectors while focusing the diffracted energy.


Geophysics ◽  
2001 ◽  
Vol 66 (3) ◽  
pp. 721-732 ◽  
Author(s):  
Lanlan Yan ◽  
Larry R. Lines

Seismic imaging of complex structures from the western Canadian Foothills can be achieved by applying the closely coupled processes of velocity analysis and depth migration. For the purposes of defining these structures in the Shaw Basing area of western Alberta, we performed a series of tests on both synthetic and real data to find optimum imaging procedures for handling large topographic relief, near‐surface velocity variations, and the complex structural geology of steeply dipping formations. To better understand the seismic processing problems, we constructed a typical foothills geological model that included thrust faults and duplex structures, computed the model responses, and then compared the performance of different migration algorithms, including the explicit finite difference (f-x) and Kirchhoff integral methods. When the correct velocity was used in the migration tests, the f-x method was the most effective in migration from topography. In cases where the velocity model was not assumed known, we determined a macrovelocity model by performing migration/velocity analysis by using smiles and frowns in common image gathers and by using depth‐focusing analysis. In applying depth imaging to the seismic survey from the Shaw Basing area, we found that imaging problems were caused partly by near‐surface velocity problems, which were not anticipated in the modeling study. Several comparisons of different migration approaches for these data indicated that prestack depth migration from topography provided the best imaging results when near‐surface velocity information was incorporated. Through iterative and interpretive migration/velocity analysis, we built a macrovelocity model for the final prestack depth migration.


Sign in / Sign up

Export Citation Format

Share Document