Joint Bayesian inversion for reservoir characterization and uncertainty quantification

2008 ◽  
Author(s):  
Tiancong Hong ◽  
Mrinal K. Sen
2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Jihoon Park ◽  
Jeongwoo Jin ◽  
Jonggeun Choe

For decision making, it is crucial to have proper reservoir characterization and uncertainty assessment of reservoir performances. Since initial models constructed with limited data have high uncertainty, it is essential to integrate both static and dynamic data for reliable future predictions. Uncertainty quantification is computationally demanding because it requires a lot of iterative forward simulations and optimizations in a single history matching, and multiple realizations of reservoir models should be computed. In this paper, a methodology is proposed to rapidly quantify uncertainties by combining streamline-based inversion and distance-based clustering. A distance between each reservoir model is defined as the norm of differences of generalized travel time (GTT) vectors. Then, reservoir models are grouped according to the distances and representative models are selected from each group. Inversions are performed on the representative models instead of using all models. We use generalized travel time inversion (GTTI) for the integration of dynamic data to overcome high nonlinearity and take advantage of computational efficiency. It is verified that the proposed method gathers models with both similar dynamic responses and permeability distribution. It also assesses the uncertainty of reservoir performances reliably, while reducing the amount of calculations significantly by using the representative models.


2021 ◽  
pp. 1-20
Author(s):  
Youjun Lee ◽  
Byeongcheol Kang ◽  
Joonyi Kim ◽  
Jonggeun Choe

Abstract Reservoir characterization is one of the essential procedures for decision makings. However, conventional inversion methods of history matching have several inevitable issues of losing geological information and poor performances when it is applied to channel reservoirs. Therefore, we propose a model regeneration scheme for reliable uncertainty quantification of channel reservoirs without conventional model inversion methods. The proposed method consists of three parts: feature extraction, model selection, and model generation. In the feature extraction part, drainage area localization and discrete cosine transform are adopted for channel feature extraction in near-wellbore area. In the model selection part, K-means clustering and an ensemble ranking method are utilized to select models that have similar characteristics to a true reservoir. In the last part, deep convolutional generative adversarial networks (DCGAN) and transfer learning are applied to generate new models similar to the selected models. After the generation, we repeat the model selection process to select final models from the selected and the generated models. We utilize these final models to quantify uncertainty of a channel reservoir by predicting their future productions. After appling the proposed scheme to 3 different channel fields, it provides reliable models for production forecasts with reduced uncertainty. The analyses show that the scheme can effectively characterize channel features and increase a probability of existence of models similar to a true model.


Sign in / Sign up

Export Citation Format

Share Document