8. Vertical Seismic Profiles through Gas-Hydrate-Bearing Sediments

Author(s):  
Ingo A. Pecher ◽  
Bernd Milkereit ◽  
Akio Sakai ◽  
Mrinal K. Sen ◽  
Nathan L. Bangs ◽  
...  
2003 ◽  
Vol 15 (2) ◽  
pp. 271-282 ◽  
Author(s):  
Y.K. JIN ◽  
M.W. LEE ◽  
Y. KIM ◽  
S.H. NAM ◽  
K.J. KIM

Multi-channel seismic data acquired on the South Shetland margin, northern Antarctic Peninsula, show that Bottom Simulating Reflectors (BSRs) are widespread in the area, implying large volumes of gas hydrates. In order to estimate the volume of gas hydrate in the area, interval velocities were determined using a 1-D velocity inversion method and porosities were deduced from their relationship with sub-bottom depth for terrigenous sediments. Because data such as well logs are not available, we made two baseline models for the velocities and porosities of non-gas hydrate-bearing sediments in the area, considering the velocity jump observed at the shallow sub-bottom depth due to joint contributions of gas hydrate and a shallow unconformity. The difference between the results of the two models is not significant. The parameters used to estimate the total volume of gas hydrate in the study area were 145 km of total length of BSRs identified on seismic profiles, 350 m thickness and 15 km width of gas hydrate-bearing sediments, and 6.3% of the average volume gas hydrate concentration (based on the second baseline model). Assuming that gas hydrates exist only where BSRs are observed, the total volume of gas hydrates along the seismic profiles in the area is about 4.8 × 1010 m3 (7.7 × 1012 m3 volume of methane at standard temperature and pressure).


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 804
Author(s):  
Lin Liu ◽  
Xiumei Zhang ◽  
Xiuming Wang

Natural gas hydrate is a new clean energy source in the 21st century, which has become a research point of the exploration and development technology. Acoustic well logs are one of the most important assets in gas hydrate studies. In this paper, an improved Carcione–Leclaire model is proposed by introducing the expressions of frame bulk modulus, shear modulus and friction coefficient between solid phases. On this basis, the sensitivities of the velocities and attenuations of the first kind of compressional (P1) and shear (S1) waves to relevant physical parameters are explored. In particular, we perform numerical modeling to investigate the effects of frequency, gas hydrate saturation and clay on the phase velocities and attenuations of the above five waves. The analyses demonstrate that, the velocities and attenuations of P1 and S1 are more sensitive to gas hydrate saturation than other parameters. The larger the gas hydrate saturation, the more reliable P1 velocity. Besides, the attenuations of P1 and S1 are more sensitive than velocity to gas hydrate saturation. Further, P1 and S1 are almost nondispersive while their phase velocities increase with the increase of gas hydrate saturation. The second compressional (P2) and shear (S2) waves and the third kind of compressional wave (P3) are dispersive in the seismic band, and the attenuations of them are significant. Moreover, in the case of clay in the solid grain frame, gas hydrate-bearing sediments exhibit lower P1 and S1 velocities. Clay decreases the attenuation of P1, and the attenuations of S1, P2, S2 and P3 exhibit little effect on clay content. We compared the velocity of P1 predicted by the model with the well log data from the Ocean Drilling Program (ODP) Leg 164 Site 995B to verify the applicability of the model. The results of the model agree well with the well log data. Finally, we estimate the hydrate layer at ODP Leg 204 Site 1247B is about 100–130 m below the seafloor, the saturation is between 0–27%, and the average saturation is 7.2%.


Geophysics ◽  
2013 ◽  
Vol 78 (3) ◽  
pp. D169-D179 ◽  
Author(s):  
Zijian Zhang ◽  
De-hua Han ◽  
Daniel R. McConnell

Hydrate-bearing sands and shallow nodular hydrate are potential energy resources and geohazards, and they both need to be better understood and identified. Therefore, it is useful to develop methodologies for modeling and simulating elastic constants of these hydrate-bearing sediments. A gas-hydrate rock-physics model based on the effective medium theory was successfully applied to dry rock, water-saturated rock, and hydrate-bearing rock. The model was used to investigate the seismic interpretation capability of hydrate-bearing sediments in the Gulf of Mexico by computing elastic constants, also known as seismic attributes, in terms of seismic interpretation, including the normal incident reflectivity (NI), Poisson’s ratio (PR), P-wave velocity ([Formula: see text]), S-wave velocity ([Formula: see text]), and density. The study of the model was concerned with the formation of gas hydrate, and, therefore, hydrate-bearing sediments were divided into hydrate-bearing sands, hydrate-bearing sands with free gas in the pore space, and shallow nodular hydrate. Although relations of hydrate saturation versus [Formula: see text] and [Formula: see text] are different between structures I and II gas hydrates, highly concentrated hydrate-bearing sands may be interpreted on poststack seismic amplitude sections because of the high NI present. The computations of elastic constant implied that hydrate-bearing sands with free gas could be detected with the crossplot of NI and PR from prestack amplitude analysis, and density may be a good hydrate indicator for shallow nodular hydrate, if it can be accurately estimated by seismic methods.


2005 ◽  
Vol 8 (4) ◽  
pp. 105-108 ◽  
Author(s):  
Jaehyoung Lee ◽  
Won-Seok Lee ◽  
Se-Joon Kim ◽  
Hyun-Tae Kim ◽  
Dae-Gee Huh

Sign in / Sign up

Export Citation Format

Share Document