Application of the variable projection scheme for frequency-domain full-waveform inversion

Geophysics ◽  
2013 ◽  
Vol 78 (6) ◽  
pp. R249-R257 ◽  
Author(s):  
Maokun Li ◽  
James Rickett ◽  
Aria Abubakar

We found a data calibration scheme for frequency-domain full-waveform inversion (FWI). The scheme is based on the variable projection technique. With this scheme, the FWI algorithm can incorporate the data calibration procedure into the inversion process without introducing additional unknown parameters. The calibration variable for each frequency is computed using a minimum norm solution between the measured and simulated data. This process is directly included in the data misfit cost function. Therefore, the inversion algorithm becomes source independent. Moreover, because all the data points are considered in the calibration process, this scheme increases the robustness of the algorithm. Numerical tests determined that the FWI algorithm can reconstruct velocity distributions accurately without the source waveform information.

Geophysics ◽  
2003 ◽  
Vol 68 (6) ◽  
pp. 2010-2015 ◽  
Author(s):  
Ki Ha Lee ◽  
Hee Joon Kim

A rigorous full‐waveform inversion of seismic data has been a challenging subject, partly because of the lack of precise knowledge of the source. Since currently available approaches involve some form of approximations to the source, inversion results are subject to the quality and choice of the source information used. We propose a new full‐waveform inversion methodology that does not involve source spectrum information. Thus, potential inversion errors from source estimation can be eliminated. A gather of seismic traces is first Fourier transformed into the frequency domain, and a normalized wavefield is obtained for each trace in the frequency domain. Normalization is done with respect to the frequency response of a reference trace selected from the gather, so the complex‐valued normalized wavefield is dimensionless. The source spectrum is eliminated during the normalization procedure. With its source spectrum eliminated, the normalized wavefield lets us construct an inversion algorithm without the source information. The inversion algorithm minimizes misfits between a measured normalized wavefield and a numerically computed normalized wavefield. The proposed approach has been demonstrated successfully using a simple 2D scalar problem.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 260
Author(s):  
Meng Suo ◽  
Dong Zhang ◽  
Yan Yang

Inspired by the large number of applications for symmetric nonlinear equations, an improved full waveform inversion algorithm is proposed in this paper in order to quantitatively measure the bone density and realize the early diagnosis of osteoporosis. The isotropic elastic wave equation is used to simulate ultrasonic propagation between bone and soft tissue, and the Gauss–Newton algorithm based on symmetric nonlinear equations is applied to solve the optimal solution in the inversion. In addition, the authors use several strategies including the frequency-grid multiscale method, the envelope inversion and the new joint velocity–density inversion to improve the result of conventional full-waveform inversion method. The effects of various inversion settings are also tested to find a balanced way of keeping good accuracy and high computational efficiency. Numerical inversion experiments showed that the improved full waveform inversion (FWI) method proposed in this paper shows superior inversion results as it can detect small velocity–density changes in bones, and the relative error of the numerical model is within 10%. This method can also avoid interference from small amounts of noise and satisfy the high precision requirements for quantitative ultrasound measurements of bone.


2019 ◽  
Vol 16 (6) ◽  
pp. 1017-1031 ◽  
Author(s):  
Yong Hu ◽  
Liguo Han ◽  
Rushan Wu ◽  
Yongzhong Xu

Abstract Full Waveform Inversion (FWI) is based on the least squares algorithm to minimize the difference between the synthetic and observed data, which is a promising technique for high-resolution velocity inversion. However, the FWI method is characterized by strong model dependence, because the ultra-low-frequency components in the field seismic data are usually not available. In this work, to reduce the model dependence of the FWI method, we introduce a Weighted Local Correlation-phase based FWI method (WLCFWI), which emphasizes the correlation phase between the synthetic and observed data in the time-frequency domain. The local correlation-phase misfit function combines the advantages of phase and normalized correlation function, and has an enormous potential for reducing the model dependence and improving FWI results. Besides, in the correlation-phase misfit function, the amplitude information is treated as a weighting factor, which emphasizes the phase similarity between synthetic and observed data. Numerical examples and the analysis of the misfit function show that the WLCFWI method has a strong ability to reduce model dependence, even if the seismic data are devoid of low-frequency components and contain strong Gaussian noise.


2015 ◽  
Author(s):  
Changlu Sun* ◽  
Guangzhi Zhang ◽  
Xinpeng Pan ◽  
Xingyao Yin

Sign in / Sign up

Export Citation Format

Share Document