Simultaneous reverse time migration of primaries and free-surface related multiples without multiple prediction

Geophysics ◽  
2014 ◽  
Vol 79 (1) ◽  
pp. S1-S9 ◽  
Author(s):  
Yibo Wang ◽  
Xu Chang ◽  
Hao Hu

Prestack reverse time migration (RTM) is usually regarded as an accurate imaging tool and has been widely used in exploration. Conventional RTM only uses primaries and treats free-surface related multiples as noise; however, free-surface related multiples can sometimes provide extra illumination of the subsurface, and this information could be used in migration procedures. There are many migration methods using free-surface related multiples, but most approaches need to predict multiples, which is time consuming and prone to error. We discovered a new RTM approach that uses the primaries and the free-surface related multiples simultaneously. Compared with migration methods that only use free-surface related multiples, the proposed approach can provide comparable migration results and does not need multiple predictions. In our approach, the source function in conventional RTM was replaced with recorded field data including primaries and free-surface related multiples, together with a synthetic wavelet; the back-propagated primaries in the conventional RTM were replaced with complete recorded field data. The imaging condition of the proposed approach was the same as the crosscorrelation imaging condition of conventional RTM. A three-layer velocity model with scatterers and the Sigsbee 2B synthetic data set were used for numerical experiments. The numerical results showed that the proposed approach can cover a wider range of the subsurface and provide better illumination compared with conventional RTM. The proposed approach was easy to implement and avoided tedious multiple prediction; it might be significant for general complex subsurface imaging.

Geophysics ◽  
2014 ◽  
Vol 79 (6) ◽  
pp. S263-S270 ◽  
Author(s):  
Yibo Wang ◽  
Yikang Zheng ◽  
Lele Zhang ◽  
Xu Chang ◽  
Zhenxing Yao

Free-surface-related multiples are usually regarded as noise in conventional seismic processing. However, they can provide extra illumination of the subsurface and thus have been used in migration procedures, e.g., in one- and two-way wave-equation migrations. The disadvantage of the migration of multiples is the migration artifacts generated by the crosscorrelation of different seismic events, e.g., primaries and second-order free-surface-related multiples, so the effective elimination of migration artifacts is crucial for migration of multiples. The angle domain common image gather (ADCIG) is a suitable domain for testing the correctness of a migration velocity model. When the migration velocity model is correct, all the events in ADCIGs should be flat, and this provides a criterion for removing the migration artifacts. Our approach first obtains ADCIGs during reverse time migration and then applies a high-resolution parabolic Radon transform to all ADCIGs. By doing so, most migration artifacts will reside in the nonzero curvature regions in the Radon domain, and then a muting procedure can be implemented to remove the data components outside the vicinity of zero curvature. After the application of an adjoint Radon transform, the filtered ADCIGs are obtained and the final denoised migration result is generated by stacking all filtered ADCIGs. A three-flat-layer velocity model and the Marmousi synthetic data set are used for numerical experiments. The numerical results revealed that the proposed approach can eliminate most artifacts generated by migration of multiples when the migration velocity model is correct.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. S307-S314 ◽  
Author(s):  
Yibo Wang ◽  
Yikang Zheng ◽  
Qingfeng Xue ◽  
Xu Chang ◽  
Tong W. Fei ◽  
...  

In the implementation of migration of multiples, reverse time migration (RTM) is superior to other migration algorithms because it can handle steeply dipping structures and offer high-resolution images of the complex subsurface. However, the RTM results using two-way wave equation contain high-amplitude, low-frequency noise and false images generated by improper wave paths in migration velocity model with sharp velocity interfaces or strong velocity gradients. To improve the imaging quality in RTM of multiples, we separate the upgoing and downgoing waves in the propagation of source and receiver wavefields. A complex function involved with the Hilbert transform is used in wavefield decomposition. Our approach is cost effective and avoids the large storage of wavefield snapshots required by the conventional wavefield separation technique. We applied migration of multiples with wavefield decomposition on a simple two-layer model and the Sigsbee 2B synthetic data set. Our results demonstrate that the proposed approach can improve the image generated by migration of multiples significantly.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. S171-S185 ◽  
Author(s):  
Chuang Li ◽  
Jianping Huang ◽  
Zhenchun Li ◽  
Han Yu ◽  
Rongrong Wang

Least-squares migration (LSM) of seismic data is supposed to produce images of subsurface structures with better quality than standard migration if we have an accurate migration velocity model. However, LSM suffers from data mismatch problems and migration artifacts when noise pollutes the recorded profiles. This study has developed a reweighted least-squares reverse time migration (RWLSRTM) method to overcome the problems caused by such noise. We first verify that spiky noise and free-surface multiples lead to the mismatch problems and should be eliminated from the data residual. The primary- and multiple-guided weighting matrices are then derived for RWLSRTM to reduce the noise in the data residual. The weighting matrices impose constraints on the data residual such that spiky noise and free-surface multiple reflections are reduced whereas primary reflections are preserved. The weights for spiky noise and multiple reflections are controlled by a dynamic threshold parameter decreasing with iterations for better results. Finally, we use an iteratively reweighted least-squares algorithm to minimize the weighted data residual. We conduct numerical tests using the synthetic data and compared the results of this method with the results of standard LSRTM. The results suggest that RWLSRTM is more robust than standard LSRTM when the seismic data contain spiky noise and multiple reflections. Moreover, our method not only suppresses the migration artifacts, but it also accelerates the convergence.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB169-WB174 ◽  
Author(s):  
Shuo Ji ◽  
Tony Huang ◽  
Kang Fu ◽  
Zhengxue Li

For deep-water Gulf of Mexico, accurate salt geometry is critical to subsalt imaging. This requires the definition of both external and internal salt geometries. In recent years, external salt geometry (i.e., boundaries between allochthonous salt and background sediment) has improved a great deal due to advances in acquisition, velocity model building, and migration algorithms. But when it comes to defining internal salt geometry (i.e., intrasalt inclusions or dirty salt), no efficient method has yet been developed. In common industry practices, intrasalt inclusions (and thus their velocity anomalies) are generally ignored during the model building stages. However, as external salt geometries reach higher levels of accuracy, it becomes more important to consider the once-ignored effects of dirty salt. We have developed a reflectivity-based approach for dirty salt velocity inversion. This method takes true-amplitude reverse time migration stack volumes as input, then estimates the dirty salt velocity based on reflectivity under a 1D assumption. Results from a 2D synthetic data set and a real 3D Wide Azimuth data set demonstrated that the reflectivity inversion scheme significantly improves the subsalt image for certain areas. In general, we believe that this method produces a better salt model than the traditional clean salt velocity approach.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB175-WB182 ◽  
Author(s):  
Yan Huang ◽  
Bing Bai ◽  
Haiyong Quan ◽  
Tony Huang ◽  
Sheng Xu ◽  
...  

The availability of wide-azimuth data and the use of reverse time migration (RTM) have dramatically increased the capabilities of imaging complex subsalt geology. With these improvements, the current obstacle for creating accurate subsalt images now lies in the velocity model. One of the challenges is to generate common image gathers that take full advantage of the additional information provided by wide-azimuth data and the additional accuracy provided by RTM for velocity model updating. A solution is to generate 3D angle domain common image gathers from RTM, which are indexed by subsurface reflection angle and subsurface azimuth angle. We apply these 3D angle gathers to subsalt tomography with the result that there were improvements in velocity updating with a wide-azimuth data set in the Gulf of Mexico.


Geophysics ◽  
2011 ◽  
Vol 76 (5) ◽  
pp. WB27-WB39 ◽  
Author(s):  
Zheng-Zheng Zhou ◽  
Michael Howard ◽  
Cheryl Mifflin

Various reverse time migration (RTM) angle gather generation techniques have been developed to address poor subsalt data quality and multiarrival induced problems in gathers from Kirchhoff migration. But these techniques introduce new problems, such as inaccuracies in 2D subsurface angle gathers and edge diffraction artifacts in 3D subsurface angle gathers. The unique rich-azimuth data set acquired over the Shenzi field in the Gulf of Mexico enabled the generally artifact-free generation of 3D subsurface angle gathers. Using this data set, we carried out suprasalt tomography and salt model building steps and then produced 3D angle gathers to update the subsalt velocity. We used tilted transverse isotropy RTM with extended image condition to generate full 3D subsurface offset domain common image gathers, which were subsequently converted to 3D angle gathers. The angle gathers were substacked along the subsurface azimuth axis into azimuth sectors. Residual moveout analysis was carried out, and ray-based tomography was used to update velocities. The updated velocity model resulted in improved imaging of the subsalt section. We also applied residual moveout and selective stacking to 3D angle gathers from the final migration to produce an optimized stack image.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. T167-T174 ◽  
Author(s):  
Dan Kosloff ◽  
Reynam C. Pestana ◽  
Hillel Tal-Ezer

A new scheme for the calculation of spatial derivatives has been developed. The technique is based on recursive derivative operators that are generated by an [Formula: see text] fit in the spectral domain. The use of recursive operators enables us to extend acoustic and elastic wave simulations to shorter wavelengths. The method is applied to the numerical solution of the 2D acoustic wave equation and to the solution of the equations of 2D dynamic elasticity in an isotropic medium. An example of reverse-time migration of a synthetic data set shows that the numerical dispersion can be significantly reduced with respect to schemes that are based on finite differences. The method is tested for the solutions of the equations of dynamic elasticity by comparing numerical and analytic solutions to Lamb’s problem.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. Q15-Q26 ◽  
Author(s):  
Giovanni Angelo Meles ◽  
Kees Wapenaar ◽  
Andrew Curtis

State-of-the-art methods to image the earth’s subsurface using active-source seismic reflection data involve reverse time migration. This and other standard seismic processing methods such as velocity analysis provide best results only when all waves in the data set are primaries (waves reflected only once). A variety of methods are therefore deployed as processing to predict and remove multiples (waves reflected several times); however, accurate removal of those predicted multiples from the recorded data using adaptive subtraction techniques proves challenging, even in cases in which they can be predicted with reasonable accuracy. We present a new, alternative strategy to construct a parallel data set consisting only of primaries, which is calculated directly from recorded data. This obviates the need for multiple prediction and removal methods. Primaries are constructed by using convolutional interferometry to combine the first-arriving events of upgoing and direct-wave downgoing Green’s functions to virtual receivers in the subsurface. The required upgoing wavefields to virtual receivers are constructed by Marchenko redatuming. Crucially, this is possible without detailed models of the earth’s subsurface reflectivity structure: Similar to the most migration techniques, the method only requires surface reflection data and estimates of direct (nonreflected) arrivals between the virtual subsurface sources and the acquisition surface. We evaluate the method on a stratified synclinal model. It is shown to be particularly robust against errors in the reference velocity model used and to improve the migrated images substantially.


2018 ◽  
Vol 35 (2) ◽  
Author(s):  
Juan Guillermo Paniagua Castrillón ◽  
Olga Lucia Quintero Montoya ◽  
Daniel Sierra-Sosa

ABSTRACT. Reverse time migration (RTM) solves the acoustic or elastic wave equation by means of the extrapolation from source and receiver wavefield in time. A migrated image is obtained by applying a criteria known as imaging condition. The cross-correlation between source and receiver wavefields is the commonly used imaging condition. However, this imaging condition produces spatial low-frequency noise, called artifacts, due to the unwanted correlation of the diving, head and backscattered waves. Several techniques have been proposed to reduce the artifacts occurrence. Derivative operators as Laplacian are the most frequently used. In this work, we propose a technique based on a spiral phase filter ranging from 0 to 2π, and a toroidal amplitude bandpass filter, known as Laguerre-Gauss transform. Through numerical experiments we present the application of this particular filter on three synthetic data sets. In addition, we present a comparative spectral study of images obtained by the zero-lag cross-correlation imaging condition, the Laplacian filtering and the Laguerre-Gauss filtering, showing their frequency features. We also present evidences not only with simulated noisy velocity fields but also by comparison with the model velocity field gradients that this method improves the RTM images by reducing the artifacts and notably enhance the reflective events. Keywords: Laguerre-Gauss transform, zero-lag cross-correlation, seismic migration, imaging condition. RESUMO. A migração reversa no tempo (RTM) resolve a equação de onda acústica ou elástica por meio da extrapolação a partir do campo de onda da fonte e do receptor no tempo. Uma imagem migrada é obtida aplicando um critério conhecido como condição de imagem. A correlação cruzada entre campos de onda de fonte e receptor é a condição de imagem comumente usada. No entanto, esta condição de imagem produz ruído espacial de baixa frequência, chamados artefatos, devido à correlação indesejada das ondas de mergulho, cabeça e retrodifusão. Várias técnicas têm sido propostas para reduzir a ocorrência de artefatos. Operadores derivados como Laplaciano são os mais utilizados. Neste trabalho, propomos uma técnica baseada em um filtro de fase espiral que varia de 0 a 2π, e um filtro passabanda de amplitude toroidal, conhecido como transformada de Laguerre-Gauss. Através de experimentos numéricos, apresentamos a aplicação deste filtro particular em três conjuntos de dados sintéticos. Além disso, apresentamos um estudo comparativo espectral de imagens obtidas pela condição de imagem de correlação cruzada atraso zero, a filtragem de Laplaciano e a filtragem Laguerre-Gauss, mostrando suas características de frequência. Apresentamos evidências não somente com campos simulados de velocidade ruidosa, mas também por comparação com os gradientes de campo de velocidade do modelo que este método melhora as imagens RTM, reduzindo os artefatos e aumentando notavelmente os eventos reflexivos. Palavras-chave: Transformação de Laguerre-Gauss, correlação cruzada atraso zero, migração sísmica, condição de imagem.


Geophysics ◽  
2011 ◽  
Vol 76 (4) ◽  
pp. S143-S149 ◽  
Author(s):  
Francisco A. da Silva Neto ◽  
Jessé C. Costa ◽  
Jörg Schleicher ◽  
Amélia Novais

Reverse-time migration (RTM) in 2.5D offers an alternative to improve resolution and amplitude when imaging 2D seismic data. Wave propagation in 2.5D assumes translational invariance of the velocity model. Under this assumption, we implement a finite-difference (FD) modeling algorithm in the mixed time-space/wavenumber domain to simulate the velocity and pressure fields for acoustic wave propagation and apply it in RTM. The 2.5D FD algorithm is truly parallel, allowing an efficient implementation in clusters. Storage and computing time requirements are strongly reduced compared to a full 3D FD simulation of the wave propagation. This feature makes 2.5D RTM much more efficient than 3D RTM, while achieving improved modeling of 3D geometrical spreading and phase properties of the seismic waveform in comparison to 2D RTM. Together with an imaging condition that compensates for uneven illumination and/or the obliquity factor, this allows recover of amplitudes proportional to the earth’s reflectivity. Numerical experiments using synthetic data demonstrate the better resolution and improved amplitude recovery of 2.5D RTM relative to 2D RTM.


Sign in / Sign up

Export Citation Format

Share Document