Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians

Geophysics ◽  
2014 ◽  
Vol 79 (3) ◽  
pp. T105-T116 ◽  
Author(s):  
Tieyuan Zhu ◽  
Jerry M. Harris

We evaluated a time-domain wave equation for modeling acoustic wave propagation in attenuating media. The wave equation was derived from Kjartansson’s constant-[Formula: see text] constitutive stress-strain relation in combination with the mass and momentum conservation equations. Our wave equation, expressed by a second-order temporal derivative and two fractional Laplacian operators, described very nearly constant-[Formula: see text] attenuation and dispersion effects. The advantage of using our formulation of two fractional Laplacians over the traditional fractional time derivative approach was the avoidance of time history memory variables and thus it offered more economic computations. In numerical simulations, we formulated the first-order constitutive equations with the perfectly matched layer absorbing boundaries. The temporal derivative was calculated with a staggered-grid finite-difference approach. The fractional Laplacians are calculated in the spatial frequency domain using a Fourier pseudospectral implementation. We validated our numerical results through comparisons with theoretical constant-[Formula: see text] attenuation and dispersion solutions, field measurements from the Pierre Shale, and results from 2D viscoacoustic analytical modeling for the homogeneous Pierre Shale. We also evaluated different formulations to show separated amplitude loss and dispersion effects on wavefields. Furthermore, we generalized our rigorous formulation for homogeneous media to an approximate equation for viscoacoustic waves in heterogeneous media. We then investigated the accuracy of numerical modeling in attenuating media with different [Formula: see text]-values and its stability in large-contrast heterogeneous media. Finally, we tested the applicability of our time-domain formulation in a heterogeneous medium with high attenuation.

Geophysics ◽  
2014 ◽  
Vol 79 (2) ◽  
pp. T61-T75 ◽  
Author(s):  
Richard L. Gibson ◽  
Kai Gao ◽  
Eric Chung ◽  
Yalchin Efendiev

Conventional finite-difference methods produce accurate solutions to the acoustic and elastic wave equation for many applications, but they face significant challenges when material properties vary significantly over distances less than the grid size. This challenge is likely to occur in reservoir characterization studies, because important reservoir heterogeneity can be present on scales of several meters to ten meters. Here, we describe a new multiscale finite-element method for simulating acoustic wave propagation in heterogeneous media that addresses this problem by coupling fine- and coarse-scale grids. The wave equation is solved on a coarse grid, but it uses basis functions that are generated from the fine grid and allow the representation of the fine-scale variation of the wavefield on the coarser grid. Time stepping also takes place on the coarse grid, providing further speed gains. Another important property of the method is that the basis functions are only computed once, and time savings are even greater when simulations are repeated for many source locations. We first present validation results for simple test models to demonstrate and quantify potential sources of error. These tests show that the fine-scale solution can be accurately approximated when the coarse grid applies a discretization up to four times larger than the original fine model. We then apply the multiscale algorithm to simulate a complete 2D seismic survey for a model with strong, fine-scale scatterers and apply standard migration algorithms to the resulting synthetic seismograms. The results again show small errors. Comparisons to a model that is upscaled by averaging densities on the fine grid show that the multiscale results are more accurate.


2021 ◽  
pp. 104796
Author(s):  
Jure Močnik Berljavac ◽  
Pankaj K. Mishra ◽  
Jure Slak ◽  
Gregor Kosec

Geophysics ◽  
2021 ◽  
pp. 1-58
Author(s):  
Hongwei Liu ◽  
Yi Luo

We present a concise time-domain wave equation to accurately simulate wave propagation in visco-acoustic media. The central idea behind this work is to dismiss the negative frequency components from a time-domain signal by converting the signal to its analytic format. The negative frequency components of any analytic signal are always zero, meaning we can construct the visco-acoustic wave equation to honor the relaxation property of the media for positive frequencies only. The newly proposed complex-valued wave equation (CWE) represents the wavefield with its analytic signal, whose real part is the desired physical wavefield, while the imaginary part is the Hilbert transform of the real component. Specifically, this CWE is accurate for both weak and strong attenuating media in terms of both dissipation and dispersion and the attenuation is precisely linear with respect to the frequencies. Besides, the CWE is easy and flexible to model dispersion-only, dissipation-only or dispersion-plus-dissipation seismic waves. We have verified these CWEs by comparing the results with analytical solutions, and achieved nearly perfect matching. Except for the homogeneous Q media, we have also extended the CWEs to heterogeneous media. The results of the CWEs for heterogeneous Q media are consistent with those computed from the nonstationary operator based Fourier Integral method and from the Standard Linear Solid (SLS) equations.


Sign in / Sign up

Export Citation Format

Share Document