pierre shale
Recently Published Documents


TOTAL DOCUMENTS

190
(FIVE YEARS 9)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 58 (3) ◽  
pp. 331-353
Author(s):  
Stephen Sonnenberg ◽  
John Zumberge ◽  
John Curtis

Carrier-bed plays are an emerging type of unconventional oil play in which reservoirs are generally of low quality because they are characterized by: 1) thinly bedded heterolithic strata; 2) significant compaction and/or diagenesis; and 3) burrowing that has mixed sandstones and mudstone lithologies (i.e., heterogeneous lithologies). In this type of play, the carrier beds are pervasively hydrocarbon saturated and can be areally extensive (>50 mi2 or 130 km2). These low-quality reservoirs generally do not meet traditional petrophysical cutoffs and because of their high clay contents can have low resistivity, low contrast pays. The reservoirs may be composed of siliciclastics or carbonates or both. Due to reservoir quality and degree of oil migration, carrier-bed plays like the Codell are being developed with horizontal drilling and multistage hydraulic fracturing. Traditional vertical drilling yields marginal to uneconomic wells that can provide a clue to the existence of a carrier-bed play. The Codell Sandstone is a low-resistivity, low-contrast pay in parts of the northern Denver Basin. The area of oil and gas production is in the deeper part of the basin between and including Silo and Wattenberg fields of Wyoming and Colorado, respectively. The thickness of the Codell in this part of the Denver Basin ranges from 15 to 25 ft (4.5 to 7.6 m). Keys to Codell production are source rock maturity, and oil entrapment in the carrier bed. Oil in the Codell carrier-bed traps was generated in various intervals including the Niobrara (mainly the “B” marl), Sharon Springs Member of the Pierre Shale, Greenhorn/Carlile, and, rarely, the Mowry Shale.


IUCrJ ◽  
2021 ◽  
Vol 8 (5) ◽  
Author(s):  
Fredrik K. Mürer ◽  
Aldritt Scaria Madathiparambil ◽  
Kim Robert Tekseth ◽  
Marco Di Michiel ◽  
Pierre Cerasi ◽  
...  

Shales have a complex mineralogy with structural features spanning several length scales, making them notoriously difficult to fully understand. Conventional attenuation-based X-ray computed tomography (CT) measures density differences, which, owing to the heterogeneity and sub-resolution features in shales, makes reliable interpretation of shale images a challenging task. CT based on X-ray diffraction (XRD-CT), rather than intensity attenuation, is becoming a well established technique for non-destructive 3D imaging, and is especially suited for heterogeneous and hierarchical materials. XRD patterns contain information about the mineral crystal structure, and crucially also crystallite orientation. Here, we report on the use of orientational imaging using XRD-CT to study crystallite-orientation distributions in a sample of Pierre shale. Diffraction-contrast CT data for a shale sample measured with its bedding-plane normal aligned parallel to a single tomographic axis perpendicular to the incoming X-ray beam are discussed, and the spatial density and orientation distribution of clay minerals in the sample are described. Finally, the scattering properties of highly attenuating inclusions in the shale bulk are studied, which are identified to contain pyrite and clinochlore. A path forward is then outlined for systematically improving the structural description of shales.


2020 ◽  
Vol 53 (12) ◽  
pp. 5715-5744
Author(s):  
Xiyang Xie ◽  
Andreas Bauer ◽  
Jørn F. Stenebråten ◽  
Sigurd Bakheim ◽  
Alexandre Lavrov ◽  
...  

AbstractThe current study shows that heating a cased borehole in low-permeability shale rock can induce plastic deformation, leading to the closure of the casing annulus and decreasing annulus connectivity. The thermally induced borehole closure is interesting for the field operation of plug and abandonment (P&A), as it potentially saves operation cost and time by avoiding cutting casing and cementing. Lab experiments and numerical simulations are implemented to investigate the thermally induced borehole closure. Pierre shale and a field shale are tested. The lab experiments are performed by heating the borehole wall in a 10-cm-OD hollow cylinder specimen. Here, a novel experimental setup is applied, allowing for measuring temperature and pore pressure at different radii inside the specimen. Both the experimental data and the post-test CT images of the rock samples indicate the rock failure by borehole heating, and under certain conditions, heating results in an annulus closure. The decrease of hydraulic conductivity through the casing annulus is observed, but this decrease is not enough to form the hydraulic-sealed annulus barrier, based on the results obtained so far. Lab-scale finite-element simulations aim to match the lab results to obtain poro-elastoplastic parameters. Then the field-scale simulations assess the formation of shale barriers by heating in field scenarios. Overall, (i) the lab experiments show that heating a borehole can increase the pore pressure in shale and hence induce rock failure; (ii) the numerical simulations match the experimental results reasonably well and indicate that the heating-induced borehole closure can sufficiently seal the casing annulus in the field-scale simulation.


2020 ◽  
Vol 57 (3) ◽  
pp. 271-304
Author(s):  
Edward J. Sterne

This study was undertaken to determine the structure and genesis of the Boulder-Weld allochthon (BWA), the 216 mi2 (559 km2) remnant of a once larger feature, that moved east from the flank of the Front Range into the western part of the Denver Basin. This review of surface and subsurface data revealed new aspects of the BWA, especially in its western part. There, the decollement of the BWA ramps 900 feet up-section to the east from a near bedding-parallel detachment low in the upper transition member of the Pierre Shale to a bedding-parallel detachment near the base of the Fox Hills Formation. Repeated sections found in wells east of the decollement ramp demonstrate up to two miles of translation in the system. Secondary faults in the hanging wall of the allochthon include antithetic thrusts bounding pop-up structures and occasional normal faults that almost exclusively overprint the decollement ramp. The hanging wall is also cut by a postulated tear fault separating areas exhibiting different amounts of translation. The western, trailing edge of the decollement shows attenuation in its hanging wall that increases to the west. This part of the decollement either represents a very low-angle breakaway normal fault or a thrust fault cutting slightly down-section in the direction of transport. Past studies perceived a southeast transport direction for the BWA in contrast to the northeast slip directions on nearby Laramide thrusts, a difference used to interpret the allochthon as a gravity slide. However, similar east-west oriented slickenlines on thrusts across the western part of the allochthon and into the neighboring Front Range leave open the possibility the BWA originated as a Laramide thrust sheet. Furthermore, both the BWA and Laramide thrusts in the neighboring Front Range utilized detachments near the top of the Pierre Shale, suggesting a possible common genesis. Given the available data, both the gravity slide and Laramide thrust models provide viable explanations for the BWA.


2020 ◽  
Vol 57 (3) ◽  
pp. 177-198
Author(s):  
Richard H. Groshong ◽  
Ken Kittleson

The Boulder-Weld fault zone, located southeast of Boulder, Colorado, is about 10 km (6 mi) wide, 34 km (21 mi) long, and involves at least 335 m (1100 ft) of upper Cretaceous sedimentary rocks. It affects the Cretaceous upper Pierre Shale, Fox Hills Sandstone, and the coal–bearing lower Laramie Formation. This study is a detailed examination of the eastern portion of the fault zone which consists of undisturbed areas separated by three long, narrow, fault-bounded uplifts that have received a variety of interpretations over the years. The fault zone geometry is determined from 21 closely spaced cross sections that use more subsurface data than previous studies, incorporate the elevations of the major economic coal seam derived from a published composite structure-contour map, and are area balanced using area-depth-strain (ADS) analysis. The most common structural style is a pop-up structure in which the uplifts are bounded on both sides by reverse faults. At larger-displacement the pop-ups are at the tip of the ramp and a second fault has formed close to the base of the ramp. A few sections show simple ramp anticlines developed above listric thrusts. The lower detachment for all structures is the distinctive Kp2 marker in the upper Pierre Shale. ADS analysis of the best-controlled uplifts shows that the uplifts are area balanced and confirms the lower detachment to be near Kp2. The structures are interpreted to have formed as a gravity slide because they formed in a break-back sequence, a characteristic of gravity gliding, and because the transport direction is approximately down the current southeast dip of the Kp2 detachment.


Palaios ◽  
2020 ◽  
Vol 35 (3) ◽  
pp. 151-163 ◽  
Author(s):  
ALISON J. ROWE ◽  
NEIL H. LANDMAN ◽  
J. KIRK COCHRAN ◽  
JAMES D. WITTS ◽  
MATTHEW P. GARB

ABSTRACT Cold methane seeps were common in the Late Cretaceous Western Interior Seaway of North America. They provided a habitat for a diverse array of fauna including ammonites. Recent research has demonstrated that ammonites lived at these sites. However, it is still unknown if they hatched at the seeps or only arrived there later in ontogeny. To answer this question, we documented the abundance and size distribution of small specimens of Baculites and Hoploscaphites at eight seep sites in the Pierre Shale of South Dakota. The specimens of Hoploscaphites range from 0.8 to 8.1 mm in shell diameter, with most of them falling between 1 and 1.5 mm. The specimens of Baculites range from 0.7 to 19.2 mm in length, with most specimens falling between 6 and 8 mm. The small size and morphology of these specimens indicate that they are neanoconchs, that is, newly hatched individuals that lived for a short time after hatching. We also analyzed the isotope composition (δ13C and δ18O) of 12 small specimens of Baculites and one specimen of Hoploscaphites with excellent shell preservation from one seep deposit. The values of δ13C and δ18O range from -16.3 to -2.5‰ and -3.0 to -0.9‰, respectively. The values of δ18O translate into temperatures of 19–28°C, which are comparable to previous estimates of the temperatures of the Western Interior Seaway. The low values of δ13C suggest that the tiny animals incorporated carbon derived from anaerobic oxidation of 12C-enriched methane into their shells. Evidently, they must have lived in close proximity to seep fluids emerging at the sediment-water interface and the associated microbial food web. However, this may have contributed to their demise if they were exposed to elevated concentrations of H2S derived from the anaerobic oxidation of methane.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
F R O’Keefe ◽  
P M Sander ◽  
T Wintrich ◽  
S Werning

Abstract Plesiosauria is an extinct clade of diapsid marine reptiles that evolved in the Late Triassic and radiated globally for the remainder of the Mesozoic. The recent description of a pregnant specimen of Polycotylus latipinnis demonstrates that some plesiosaurs were viviparous. To establish a baseline of histological data on plesiosaur ontogeny, we sampled the mother and fetus of the gravid plesiosaur specimen. To widen the base of data concerning ontogeny and life history of plesiosaurs, we gathered additional morphologic and histologic data from a securely identified growth series of polycotylids from the Pierre Shale of South Dakota. Paleohistological thin sections were prepared from the three humeri. Both adults show a dense, heavily remodeled cortex consisting entirely of longitudinally oriented secondary osteons, except for a thin rind of superficial primary bone. The mother exhibits an external fundamental system, indicating it was fully mature; the other adult does not. In both adults the cortex grades into a spongy medulla, comprising large vascular canals and erosion rooms surrounded by secondary lamellar trabecular bone, and lacking a marrow cavity. The fetal humerus possesses a medullary region similar to that of the Dolichorhynchops bonneri adult, although its lamellar bone is primary and deposited around calcified cartilage. The medulla is demarcated from the cortex by a prominent Kastschenko’s line. The cortex of the fetus is a relatively thin layer of periosteal woven bone, longitudinally to radially vascularized, and interfingered with columns of osteoblasts surrounded by rapidly-deposited extracellular matrix. The neonate humerus resembles the fetus, with its trabeculae identical in both size and histology, although it lacks calcified cartilage. The cortex is also similar but much thicker, consisting entirely of rapidly deposited, radially vascularized, woven to fibrolamellar bone. The cortex carries a line near its surface. This feature is not a line of arrested growth, but a sudden change in vascular angle and increase in bone density. We argue this feature is a birth line indicating a change in growth regime, possibly in response to increased hydrodynamic forces after birth. The birth line indicates that the neonate was about 40% of maternal length when born. Our histological data demonstrate that polycotylids had very high fetal growth rates, and that birth size was large. Comparison with the geologically oldest plesiosaur confirms that rapid growth evolved in the Triassic, although histological details differ, and the degree to which the polycotylid ontogenetic pattern is generalizable to other plesiosaurs is currently unknown. Further histological research utilizing full growth series is needed, particularly for Jurassic taxa.


Paleobiology ◽  
2018 ◽  
Vol 45 (1) ◽  
pp. 114-135 ◽  
Author(s):  
Joshua D. Laird ◽  
Christina L. Belanger

AbstractAccurately recognizing analogues between fossil and modern ecosystems allows paleoecologists to more fully interpret fossil assemblages and modern ecologists to leverage the fossil record to address long-term ecological and environmental changes. However, this becomes increasingly difficult as taxonomic turnover increases the dissimilarity between ecosystems. Here we use a guild-based approach to compare the ecological similarity of Cretaceous cold-seep assemblages preserved in the Pierre Shale surrounding the Black Hills and modern cold-seep assemblages from five previously recognized biofacies. We modify modern assemblage data to include only those taxa with fossilizable hard parts greater than 5 mm in length to make these modern data sets more comparable to potential fossil analogues. We find that while the Black Hills assemblages are more similar in ecological guild composition to the modern thyasirid biofacies, subsets share similarities in ecological structure to the lucinid and mussel-bed biofacies. The fossil seep assemblages are also more similar to one another than are modern assemblages belonging to the same biofacies, despite greater geographic and temporal dissimilarity among the fossil samples. Furthermore, guild-level ordination analyses show a secondary faunal gradient that reflects community succession in the hard substrate–dominated modern assemblages and reveals a parallel faunal gradient in the soft sediment–dominated Cretaceous assemblages, consistent with a gradient in the influence of seep fluids on the faunas. Thus, while the Black Hills assemblages are quite homogeneous in their composition, they capture ecological variation similar to successional patterns in modern seep systems.


Sign in / Sign up

Export Citation Format

Share Document