scholarly journals Q-compensated least-squares reverse time migration using low-rank one-step wave extrapolation

Geophysics ◽  
2016 ◽  
Vol 81 (4) ◽  
pp. S271-S279 ◽  
Author(s):  
Junzhe Sun ◽  
Sergey Fomel ◽  
Tieyuan Zhu ◽  
Jingwei Hu

Attenuation of seismic waves needs to be taken into account to improve the accuracy of seismic imaging. In viscoacoustic media, reverse time migration (RTM) can be performed with [Formula: see text]-compensation, which is also known as [Formula: see text]-RTM. Least-squares RTM (LSRTM) has also been shown to be able to compensate for attenuation through linearized inversion. However, seismic attenuation may significantly slow down the convergence rate of the least-squares iterative inversion process without proper preconditioning. We have found that incorporating attenuation compensation into LSRTM can improve the speed of convergence in attenuating media, obtaining high-quality images within the first few iterations. Based on the low-rank one-step seismic modeling operator in viscoacoustic media, we have derived its adjoint operator using nonstationary filtering theory. The proposed forward and adjoint operators can be efficiently applied to propagate viscoacoustic waves and to implement attenuation compensation. Recognizing that, in viscoacoustic media, the wave-equation Hessian may become ill-conditioned, we propose to precondition LSRTM with [Formula: see text]-compensated RTM. Numerical examples showed that the preconditioned [Formula: see text]-LSRTM method has a significantly faster convergence rate than LSRTM and thus is preferable for practical applications.

Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. S39-S54 ◽  
Author(s):  
Junzhe Sun ◽  
Sergey Fomel ◽  
Lexing Ying

Reverse time migration (RTM) relies on accurate wave extrapolation engines to image complex subsurface structures. To construct such operators with high efficiency and numerical stability, we have developed a one-step wave extrapolation approach using complex-valued low-rank decomposition to approximate the mixed-domain space-wavenumber wave extrapolation symbol. The low-rank one-step method involves a complex-valued phase function, which is more flexible than a real-valued phase function of two-step schemes, and thus it is capable of modeling a wider variety of dispersion relations. Two novel designs of the phase function leads to the desired properties in wave extrapolation. First, for wave propagation in inhomogeneous media, including a velocity gradient term assures a more accurate phase behavior, particularly when the velocity variations are large. Second, an absorbing boundary condition, which is propagation-direction-dependent, can be incorporated into the phase function as an anisotropic attenuation term. This term allows waves to travel parallel to the boundary without absorption, thus reducing artificial reflections at wide incident angles. Using numerical experiments, we revealed the stability improvement of a one-step scheme in comparison with two-step schemes. We observed the low-rank one-step operator to be remarkably stable and capable of propagating waves using large time step sizes, even beyond the Nyquist limit. The stability property can help to minimize the computational cost of seismic modeling or RTM. The low-rank one-step wave extrapolation also handles anisotropic wave propagation accurately and efficiently. When applied to RTM in anisotropic media, the proposed method generated high-quality images.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. S151-S172 ◽  
Author(s):  
Peng Guo ◽  
George A. McMechan

Low values of P- and S-wave quality factors [Formula: see text] and [Formula: see text] result in strong intrinsic seismic attenuation in seismic modeling and imaging. We use a linearized waveform inversion approach, by generalizing least-squares reverse time migration (LSRTM) for viscoelastic media ([Formula: see text]-LSRTM), to compensate for the attenuation loss for P- and S-images. We use the first-order particle velocity, stress, and memory variable equations, with explicit [Formula: see text] in the formulations, based on the generalized standard linear solid, as the forward-modeling operator. The linearized two-way viscoelastic modeling operator is obtained with modulus perturbations introduced for the relaxed P- and S-moduli. The viscoelastic adjoint operator and the P- and S-imaging conditions for modulus perturbations are derived using the adjoint-state method and an augmented Lagrangian functional. [Formula: see text]-LSRTM solves the viscoelastic linearized modeling operator for generating synthetic data, and the adjoint operator is used for back propagating the data residual. With the correct background velocity model, and with the inclusion of [Formula: see text] in the modeling and imaging, [Formula: see text]-LSRTM is capable of iteratively updating the P- and S-modulus perturbations, and compensating the attenuation loss caused by [Formula: see text] and [Formula: see text], in the direction of minimizing the data residual between the observed and predicted data. Compared with elastic LSRTM results, the P- and S-modulus perturbation images from [Formula: see text]-LSRTM have stronger (closer to the true modulus perturbation), and more continuous, amplitudes for the structures in and beneath low-[Formula: see text] zones. The residuals in the image space obtained using the correctly parameterized [Formula: see text]-LSRTM are much smaller than those obtained using the incorrectly parameterized elastic LSRTM. However, the data residuals from [Formula: see text]-LSRTM and elastic LSRTM are similar because elastic Born modeling with a weak reflector in the image produces similar reflection amplitudes with viscoelastic Born modeling with a strong reflector.


Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. S267-S283 ◽  
Author(s):  
Yangkang Chen ◽  
Min Bai ◽  
Yatong Zhou ◽  
Qingchen Zhang ◽  
Yufeng Wang ◽  
...  

Seismic migration can be formulated as an inverse problem, the model of which can be iteratively inverted via the least-squares migration framework instead of approximated by applying the adjoint operator to the observed data. Least-squares reverse time migration (LSRTM) has attracted more and more attention in modern seismic imaging workflows because of its exceptional performance in obtaining high-resolution true-amplitude seismic images and the fast development of the computational capability of modern computing architecture. However, due to a variety of reasons, e.g., insufficient shot coverage and data sampling, the image from least-squares inversion still contains a large amount of artifacts. This phenomenon results from the ill-posed nature of the inverse problem. In traditional LSRTM, the minimum least-squares energy of the model is used as a constraint to regularize the inverse problem. Considering the residual noise caused by the smoothing operator in traditional LSRTM, we regularize the model using a powerful low-rank decomposition operator, which can better suppress the migration artifacts in the image during iterative inversion. We evaluate in detail the low-rank decomposition operator and the way to apply it along the geologic structure of seismic reflectors. We comprehensively analyze the performance of our algorithm in attenuating crosstalk noise caused by simultaneous source acquisition and migration artifacts caused by insufficient space sampling via two synthetic examples and one field data example. Our results indicate that compared to the conventional smoothing operator, our low-rank decomposition operator can help obtain a cleaner LSRTM image and obtain a slightly better edge-preserving performance.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. S115-S134
Author(s):  
Wenlei Gao ◽  
Gian Matharu ◽  
Mauricio D. Sacchi

Least-squares reverse time migration (LSRTM) has become increasingly popular for complex wavefield imaging due to its ability to equalize image amplitudes, attenuate migration artifacts, handle incomplete and noisy data, and improve spatial resolution. The major drawback of LSRTM is the considerable computational cost incurred by performing migration/demigration at each iteration of the optimization. To ameliorate the computational cost, we introduced a fast method to solve the LSRTM problem in the image domain. Our method is based on a new factorization that approximates the Hessian using a superposition of Kronecker products. The Kronecker factors are small matrices relative to the size of the Hessian. Crucially, the factorization is able to honor the characteristic block-band structure of the Hessian. We have developed a computationally efficient algorithm to estimate the Kronecker factors via low-rank matrix completion. The completion algorithm uses only a small percentage of preferentially sampled elements of the Hessian matrix. Element sampling requires computation of the source and receiver Green’s functions but avoids explicitly constructing the entire Hessian. Our Kronecker-based factorization leads to an imaging technique that we name Kronecker-LSRTM (KLSRTM). The iterative solution of the image-domain KLSRTM is fast because we replace computationally expensive migration/demigration operations with fast matrix multiplications involving small matrices. We first validate the efficacy of our method by explicitly computing the Hessian for a small problem. Subsequent 2D numerical tests compare LSRTM with KLSRTM for several benchmark models. We observe that KLSRTM achieves near-identical images to LSRTM at a significantly reduced computational cost (approximately 5–15× faster); however, KLSRTM has an increased, yet manageable, memory cost.


Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. S425-S438 ◽  
Author(s):  
Yuqing Chen ◽  
Gaurav Dutta ◽  
Wei Dai ◽  
Gerard T. Schuster

Viscoacoustic least-squares reverse time migration, also denoted as Q-LSRTM, linearly inverts for the subsurface reflectivity model from lossy data. Compared with conventional migration methods, it can compensate for the amplitude loss in the migrated images due to strong subsurface attenuation and can produce reflectors that are accurately positioned in depth. However, the adjoint [Formula: see text] propagators used for backward propagating the residual data are also attenuative. Thus, the inverted images from [Formula: see text]-LSRTM with a small number of iterations are often observed to have lower resolution when compared with the benchmark acoustic LSRTM images from acoustic data. To increase the resolution and accelerate the convergence of [Formula: see text]-LSRTM, we used viscoacoustic deblurring filters as a preconditioner for [Formula: see text]-LSRTM. These filters can be estimated by matching a simulated migration image to its reference reflectivity model. Numerical tests on synthetic and field data demonstrate that [Formula: see text]-LSRTM combined with viscoacoustic deblurring filters can produce images with higher resolution and more balanced amplitudes than images from acoustic RTM, acoustic LSRTM, and [Formula: see text]-LSRTM when there is strong attenuation in the background medium. Our preconditioning method is also shown to improve the convergence rate of [Formula: see text]-LSRTM by more than 30% in some cases and significantly compensate for the lossy artifacts in RTM images.


Sign in / Sign up

Export Citation Format

Share Document