scholarly journals Deep-learning inversion: A next-generation seismic velocity model building method

Geophysics ◽  
2019 ◽  
Vol 84 (4) ◽  
pp. R583-R599 ◽  
Author(s):  
Fangshu Yang ◽  
Jianwei Ma

Seismic velocity is one of the most important parameters used in seismic exploration. Accurate velocity models are the key prerequisites for reverse time migration and other high-resolution seismic imaging techniques. Such velocity information has traditionally been derived by tomography or full-waveform inversion (FWI), which are time consuming and computationally expensive, and they rely heavily on human interaction and quality control. We have investigated a novel method based on the supervised deep fully convolutional neural network for velocity-model building directly from raw seismograms. Unlike the conventional inversion method based on physical models, supervised deep-learning methods are based on big-data training rather than prior-knowledge assumptions. During the training stage, the network establishes a nonlinear projection from the multishot seismic data to the corresponding velocity models. During the prediction stage, the trained network can be used to estimate the velocity models from the new input seismic data. One key characteristic of the deep-learning method is that it can automatically extract multilayer useful features without the need for human-curated activities and an initial velocity setup. The data-driven method usually requires more time during the training stage, and actual predictions take less time, with only seconds needed. Therefore, the computational time of geophysical inversions, including real-time inversions, can be dramatically reduced once a good generalized network is built. By using numerical experiments on synthetic models, the promising performance of our proposed method is shown in comparison with conventional FWI even when the input data are in more realistic scenarios. We have also evaluated deep-learning methods, the training data set, the lack of low frequencies, and the advantages and disadvantages of our method.

Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Hani Alzahrani ◽  
Jeffrey Shragge

Data-driven artificial neural networks (ANNs) offer a number of advantages over conventional deterministic methods in a wide range of geophysical problems. For seismic velocity model building, judiciously trained ANNs offer the possibility of estimating high-resolution subsurface velocity models. However, a significant challenge of ANNs is training generalization, which is the ability of an ANN to apply the learning from the training process to test data not previously encountered. In the context of velocity model building, this means learning the relationship between velocity models and the corresponding seismic data from a set of training data, and then using acquired seismic data to accurately estimate unknown velocity models. We ask the following question: what type of velocity model structures need be included in the training process so that the trained ANN can invert seismic data from a different (hypothetical) geological setting? To address this question, we create four sets of training models: geologically inspired and purely geometrical, both with and without background velocity gradients. We find that using geologically inspired training data produce models with well-delineated layer interfaces and fewer intra-layer velocity variations. The absence of a certain geological structure in training models, though, hinders the ANN's ability to recover it in the testing data. We use purely geometric training models consisting of square blocks of varying size to demonstrate the ability of ANNs to recover reasonable approximations of flat, dipping, and curved interfaces. However, the predicted models suffer from intra-layer velocity variations and non-physical artifacts. Overall, the results successfully demonstrate the use of ANNs in recovering accurate velocity model estimates, and highlight the possibility of using such an approach for the generalized seismic velocity inversion problem.


2019 ◽  
Vol 38 (11) ◽  
pp. 872a1-872a9 ◽  
Author(s):  
Mauricio Araya-Polo ◽  
Stuart Farris ◽  
Manuel Florez

Exploration seismic data are heavily manipulated before human interpreters are able to extract meaningful information regarding subsurface structures. This manipulation adds modeling and human biases and is limited by methodological shortcomings. Alternatively, using seismic data directly is becoming possible thanks to deep learning (DL) techniques. A DL-based workflow is introduced that uses analog velocity models and realistic raw seismic waveforms as input and produces subsurface velocity models as output. When insufficient data are used for training, DL algorithms tend to overfit or fail. Gathering large amounts of labeled and standardized seismic data sets is not straightforward. This shortage of quality data is addressed by building a generative adversarial network (GAN) to augment the original training data set, which is then used by DL-driven seismic tomography as input. The DL tomographic operator predicts velocity models with high statistical and structural accuracy after being trained with GAN-generated velocity models. Beyond the field of exploration geophysics, the use of machine learning in earth science is challenged by the lack of labeled data or properly interpreted ground truth, since we seldom know what truly exists beneath the earth's surface. The unsupervised approach (using GANs to generate labeled data)illustrates a way to mitigate this problem and opens geology, geophysics, and planetary sciences to more DL applications.


2020 ◽  
Author(s):  
J. Targino ◽  
K. Roberts ◽  
J. Souza ◽  
H. Santos ◽  
H. Senger ◽  
...  

Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE183-VE194 ◽  
Author(s):  
Junru Jiao ◽  
David R. Lowrey ◽  
John F. Willis ◽  
Ruben D. Martínez

Imaging sediments below salt bodies is challenging because of the inherent difficulty of estimating accurate velocity models. These models can be estimated in a variety of ways with varying degrees of expense and effectiveness. Two methods are commercially viable trade-offs. In the first method, residual-moveout analysis is performed in a layer-stripping mode. The models produced with this method can be used as a first approximation of the subsalt velocity field. A wave-equation migration scanning technique is more suitable for fine-tuning the velocity model below the salt. Both methods can be run as part of a sophisticated interactive velocity interpretation software package that makes velocity interpretation efficient. Performance of these methods has been tested on synthetic and field data examples.


2021 ◽  
Author(s):  
Farah Syazana Dzulkefli ◽  
Kefeng Xin ◽  
Ahmad Riza Ghazali ◽  
Guo Qiang ◽  
Tariq Alkhalifah

Abstract Salt is known for having a generally low density and higher velocity compared with the surrounding rock layers which causes the energy to scatter once the seismic wavefield hits the salt body and relatively less energy is transmitted through the salt to the deeper subsurface. As a result, most of imaging approaches are unable to image the base of the salt and the reservoir below the salt. Even the velocity model building such as FWI often fails to illuminate the deeper parts of salt area. In this paper, we show that Full Wavefield Redatuming (FWR) is used to retrieved and enhance the seismic data below the salt area, leading to a better seismic image quality and allowing us to focus on updating the velocity in target area below the salt. However, this redatuming approach requires a good overburden velocity model to retrieved good redatumed data. Thus, by using synthetic SEAM model, our objective is to study on the accuracy of the overburden velocity model required for imaging beneath complex overburden. The results show that the kinematic components of wave propagation are preserved through redatuming even with heavily smoothed overburden velocity model.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. U21-U29
Author(s):  
Gabriel Fabien-Ouellet ◽  
Rahul Sarkar

Applying deep learning to 3D velocity model building remains a challenge due to the sheer volume of data required to train large-scale artificial neural networks. Moreover, little is known about what types of network architectures are appropriate for such a complex task. To ease the development of a deep-learning approach for seismic velocity estimation, we have evaluated a simplified surrogate problem — the estimation of the root-mean-square (rms) and interval velocity in time from common-midpoint gathers — for 1D layered velocity models. We have developed a deep neural network, whose design was inspired by the information flow found in semblance analysis. The network replaces semblance estimation by a representation built with a deep convolutional neural network, and then it performs velocity estimation automatically with recurrent neural networks. The network is trained with synthetic data to identify primary reflection events, rms velocity, and interval velocity. For a synthetic test set containing 1D layered models, we find that rms and interval velocity are accurately estimated, with an error of less than [Formula: see text] for the rms velocity. We apply the neural network to a real 2D marine survey and obtain accurate rms velocity predictions leading to a coherent stacked section, in addition to an estimation of the interval velocity that reproduces the main structures in the stacked section. Our results provide strong evidence that neural networks can estimate velocity from seismic data and that good performance can be achieved on real data even if the training is based on synthetics. The findings for the 1D problem suggest that deep convolutional encoders and recurrent neural networks are promising components of more complex networks that can perform 2D and 3D velocity model building.


Sign in / Sign up

Export Citation Format

Share Document