Denoising for full-waveform inversion with expanded prediction-error filters

Geophysics ◽  
2021 ◽  
pp. 1-54
Author(s):  
Milad Bader ◽  
Robert G. Clapp ◽  
Biondo Biondi

Low-frequency data below 5 Hz are essential to the convergence of full-waveform inversion towards a useful solution. They help build the velocity model low wavenumbers and reduce the risk of cycle-skipping. In marine environments, low-frequency data are characterized by a low signal-to-noise ratio and can lead to erroneous models when inverted, especially if the noise contains coherent components. Often field data are high-pass filtered before any processing step, sacrificing weak but essential signal for full-waveform inversion. We propose to denoise the low-frequency data using prediction-error filters that we estimate from a high-frequency component with a high signal-to-noise ratio. The constructed filter captures the multi-dimensional spectrum of the high-frequency signal. We expand the filter's axes in the time-space domain to compress its spectrum towards the low frequencies and wavenumbers. The expanded filter becomes a predictor of the target low-frequency signal, and we incorporate it in a minimization scheme to attenuate noise. To account for data non-stationarity while retaining the simplicity of stationary filters, we divide the data into non-overlapping patches and linearly interpolate stationary filters at each data sample. We apply our method to synthetic stationary and non-stationary data, and we show it improves the full-waveform inversion results initialized at 2.5 Hz using the Marmousi model. We also demonstrate that the denoising attenuates non-stationary shear energy recorded by the vertical component of ocean-bottom nodes.

Geophysics ◽  
2020 ◽  
Vol 85 (6) ◽  
pp. A37-A43
Author(s):  
Jinwei Fang ◽  
Hui Zhou ◽  
Yunyue Elita Li ◽  
Qingchen Zhang ◽  
Lingqian Wang ◽  
...  

The lack of low-frequency signals in seismic data makes the full-waveform inversion (FWI) procedure easily fall into local minima leading to unreliable results. To reconstruct the missing low-frequency signals more accurately and effectively, we have developed a data-driven low-frequency recovery method based on deep learning from high-frequency signals. In our method, we develop the idea of using a basic data patch of seismic data to build a local data-driven mapping in low-frequency recovery. Energy balancing and data patches are used to prepare high- and low-frequency data for training a convolutional neural network (CNN) to establish the relationship between the high- and low-frequency data pairs. The trained CNN then can be used to predict low-frequency data from high-frequency data. Our CNN was trained on the Marmousi model and tested on the overthrust model, as well as field data. The synthetic experimental results reveal that the predicted low-frequency data match the true low-frequency data very well in the time and frequency domains, and the field results show the successfully extended low-frequency spectra. Furthermore, two FWI tests using the predicted data demonstrate that our approach can reliably recover the low-frequency data.


Geophysics ◽  
2021 ◽  
pp. 1-82
Author(s):  
Wenyi Hu ◽  
Yuchen Jin ◽  
Xuqing Wu ◽  
Jiefu Chen

To effectively overcome the cycle-skipping issue in full waveform inversion (FWI), we developed a deep neural network (DNN) approach to predict the absent low-frequency components by exploiting the hidden physical relation connecting the low- and the high-frequency data. To efficiently solve this challenging nonlinear regression problem, two novel strategies were proposed to design the DNN architecture and to optimize the learning process: (1) dual data feed structure; (2) progressive transfer learning. With the dual data feed structure, not only the high-frequency data, but also the corresponding beat tone data are fed into the DNN to relieve the burden of feature extraction. The second strategy, progressive transfer learning, enables us to train the DNN using a single evolving training dataset. Within the framework of the progressive transfer learning, the training dataset continuously evolves in an iterative manner by gradually retrieving the subsurface information through the physics-based inversion module, progressively enhancing the prediction accuracy of the DNN and propelling the inversion process out of the local minima. The synthetic numerical experiments suggest that, without any a priori geological information, the low-frequency data predicted by the progressive transfer learning are sufficiently accurate for an FWI engine to produce reliable subsurface velocity models free of cycle-skipping artifacts.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. R339-R348 ◽  
Author(s):  
Yunyue Elita Li ◽  
Laurent Demanet

The availability of low-frequency data is an important factor in the success of full-waveform inversion (FWI) in the acoustic regime. The low frequencies help determine the kinematically relevant, low-wavenumber components of the velocity model, which are in turn needed to avoid convergence of FWI to spurious local minima. However, acquiring data less than 2 or 3 Hz from the field is a challenging and expensive task. We have explored the possibility of synthesizing the low frequencies computationally from high-frequency data and used the resulting prediction of the missing data to seed the frequency sweep of FWI. As a signal-processing problem, bandwidth extension is a very nonlinear and delicate operation. In all but the simplest of scenarios, it can only be expected to lead to plausible recovery of the low frequencies, rather than their accurate reconstruction. Even so, it still requires a high-level interpretation of band-limited seismic records into individual events, each of which can be extrapolated to a lower (or higher) frequency band from the nondispersive nature of the wave-propagation model. We have used the phase-tracking method for the event separation task. The fidelity of the resulting extrapolation method is typically higher in phase than in amplitude. To demonstrate the reliability of bandwidth extension in the context of FWI, we first used the low frequencies in the extrapolated band as data substitute, to create the low-wavenumber background velocity model, and then we switched to recorded data in the available band for the rest of the iterations. The resulting method, extrapolated FWI, demonstrated surprising robustness to the inaccuracies in the extrapolated low-frequency data. With two synthetic examples calibrated so that regular FWI needs to be initialized at 1 Hz to avoid local minima, we have determined that FWI based on an extrapolated [1, 5] Hz band, itself generated from data available in the [5, 15] Hz band, can produce reasonable estimations of the low-wavenumber velocity models.


Geophysics ◽  
2021 ◽  
pp. 1-55
Author(s):  
Shihao Yuan ◽  
Nobuaki Fuji ◽  
Satish C. Singh

Seismic full waveform inversion is a powerful method to estimate the elastic properties of the subsurface. To mitigate the non-linearity and cycle-skipping problems, in a hierarchical manner, one inverts first low-frequency contents to determine long- and medium-wavelength structures and then increases the frequency contents to obtain detailed information. However, the inversion of higher frequencies can be computationally very expensive, especially when the target of interest, such as oil/gas reservoirs and axial melt lens, is at a great depth, far away from source and receiver arrays. To address this problem, we present a localized full waveform inversion algorithm where iterative modeling is performed locally, allowing us to extend inversions for higher frequencies with little computation effort. Our method is particularly useful for time-lapse seismic, where the changes in elastic parameters are local due to fluid extraction and injection in the subsurface. In our method, both sources and receivers are extrapolated to a region close to the target area, allowing forward modeling and inversion to be performed locally after low-frequency full-model inversion for the background model, which by nature only represents long- to medium-wavelength features. Numerical tests show that the inversion of low-frequency data for the overburden is sufficient to provide an accurate high-frequency estimation of elastic parameters of the target region.


Sign in / Sign up

Export Citation Format

Share Document