Least-squares reverse time migration using convolutional neural networks

Geophysics ◽  
2021 ◽  
pp. 1-92
Author(s):  
Wei Zhang ◽  
Jinghuai Gao ◽  
Tao Yang ◽  
Xiudi Jiang ◽  
Wenbo Sun

Least-squares reverse time migration (LSRTM) has the potential to reconstruct a high-resolution image of subsurface reflectivity. However, the current data-domain LSRTM approach, which iteratively updates the subsurface reflectivity by minimizing the data residuals, is a computationally expensive task. To alleviate this problem and improve imaging quality, we develop a LSRTM approach using convolutional neural networks (CNNs), which is referred to as CNN-LSRTM. Specifically, the LSRTM problem can be implemented via a gradient-like iterative scheme, in which the updating component in each iteration is learned via a CNN model. In order to make the most of observation data and migration velocity model at hand, we utilize the common-source RTM image, the stacked RTM image, and the migration velocity model rather than only the stacked RTM image as the input data of CNN. We have successfully trained the constructed CNN model on the training data sets with a total of 5000 randomly layered and fault models. Based on the well-trained CNN model, we have proved that the proposed approach can efficiently recover the high-resolution reflection image for the layered, fault, and overthrust models. Through a marine field data experiment, it can determine the benefit of our constructed CNN model in terms of computational efficiency. In addition, we analyze the influence of input data of the constructed CNN model on the reconstruction quality of the reflection image.

2021 ◽  
pp. 104469
Author(s):  
A. Maul ◽  
A. Bulcão ◽  
R.M. Dias ◽  
B. Pereira-Dias ◽  
L. Teixeira ◽  
...  

2017 ◽  
Vol 5 (3) ◽  
pp. SN1-SN11 ◽  
Author(s):  
Chong Zeng ◽  
Shuqian Dong ◽  
Bin Wang

Least-squares reverse time migration (LSRTM) overcomes the shortcomings of conventional migration algorithms by iteratively fitting the demigrated synthetic data and the input data to refine the initial depth image toward true reflectivity. It gradually enhances the effective signals and removes the migration artifacts such as swing noise during conventional migration. When imaging the subsalt area with complex structures, many practical issues have to be considered to ensure the convergence of the inversion. We tackle those practical issues such as an unknown source wavelet, inaccurate migration velocity, and slow convergence to make LSRTM applicable to subsalt imaging in geologic complex areas such as the Gulf of Mexico. Dynamic warping is used to realign the modeled and input data to compensate for minor velocity errors in the subsalt sediments. A windowed crosscorrelation-based confidence level is used to control the quality of the residual computation. The confidence level is further used as an inverse weighting to precondition the data residual so that the convergence rates in shallow and deep images are automatically balanced. It also helps suppress the strong artifacts related to the salt boundary. The efficiency of the LSRTM is improved so that interpretable images in the area of interest can be obtained in only a few iterations. After removing the artifacts near the salt body using LSRTM, the image better represents the true geology than the outcome of conventional RTM; thus, it facilitates the interpretation. Synthetic and field data examples examine and demonstrate the effectiveness of the adaptive strategies.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yunsong Huang ◽  
Miao Zhang ◽  
Kai Gao ◽  
Andrew Sabin ◽  
Lianjie Huang

Accurate imaging of subsurface complex structures with faults is crucial for geothermal exploration because faults are generally the primary conduit of hydrothermal flow. It is very challenging to image geothermal exploration areas because of complex geologic structures with various faults and noisy surface seismic data with strong and coherent ground-roll noise. In addition, fracture zones and most geologic formations behave as anisotropic media for seismic-wave propagation. Properly suppressing ground-roll noise and accounting for subsurface anisotropic properties are essential for high-resolution imaging of subsurface structures and faults for geothermal exploration. We develop a novel wavenumber-adaptive bandpass filter to suppress the ground-roll noise without affecting useful seismic signals. This filter adaptively exploits both characteristics of the lower frequency and the smaller velocity of the ground-roll noise than those of the signals. Consequently, this filter can effectively differentiate the ground-roll noise from the signal. We use our novel filter to attenuate the ground-roll noise in seismic data along five survey lines acquired by the U.S. Navy Geothermal Program Office at Pirouette Mountain and Eleven-Mile Canyon in Nevada, United States. We then apply our novel anisotropic least-squares reverse-time migration algorithm to the resulting data for imaging subsurface structures at the Pirouette Mountain and Eleven-Mile Canyon geothermal exploration areas. The migration method employs an efficient implicit wavefield-separation scheme to reduce image artifacts and improve the image quality. Our results demonstrate that our wavenumber-adaptive bandpass filtering method successfully suppresses the strong and coherent ground-roll noise in the land seismic data, and our anisotropic least-squares reverse-time migration produces high-resolution subsurface images of Pirouette Mountain and Eleven-Mile Canyon, facilitating accurate fault interpretation for geothermal exploration.


Geophysics ◽  
2021 ◽  
pp. 1-48
Author(s):  
Mikhail Davydenko ◽  
Eric Verschuur

Waveform inversion based on Least-Squares Reverse Time Migration (LSRTM) usually involves Born modelling, which models the primary-only data. As a result the inversion process handles only primaries and corresponding multiple elimination pre-processing of the input data is required prior to imaging and inversion. Otherwise, multiples left in the input data are mapped as false reflectors, also known as crosstalk, in the final image. At the same time the developed Full Wavefield Migration (FWM) methodology can handle internal multiples in an inversion-based imaging process. However, because it is based on the framework of the one-way wave equation, it cannot image dips close to and beyond 90 degrees. Therefore, we aim at upgrading LSRTM framework by bringing functionality of FWM to handle internal multiples. We have discovered that the secondary source term, used in the original formulation of FWM to define a wavefield relationship that allows to model multiple scattering via reflectivity, can be injected into a pressure component when simulating the two-way wave equation using finite-difference modelling. We use this modified forward model for estimating the reflectivity model with automatic crosstalk supression and validate the method on both synthetic and field data containing visible internal multiples.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. S567-S580 ◽  
Author(s):  
Jizhong Yang ◽  
Yunyue Elita Li ◽  
Arthur Cheng ◽  
Yuzhu Liu ◽  
Liangguo Dong

Least-squares reverse time migration (LSRTM), which aims to match the modeled data with the observed data in an iterative inversion procedure, is very sensitive to the accuracy of the migration velocity model. If the migration velocity model contains errors, the final migration image may be defocused and incoherent. We have used an LSRTM scheme based on the subsurface offset extended imaging condition, least-squares extended reverse time migration (LSERTM), to provide a better solution when large velocity errors exist. By introducing an extra dimension in the image space, LSERTM can fit the observed data even when significant errors are present in the migration velocity model. We further investigate this property and find that after stacking the extended migration images along the subsurface offset axis within the theoretical lateral resolution limit, we can obtain an image with better coherency and fewer migration artifacts. Using multiple numerical examples, we demonstrate that our method provides superior inversion results compared to conventional LSRTM when the bulk velocity errors are as large as 10%.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. S581-S598 ◽  
Author(s):  
Bin He ◽  
Yike Liu ◽  
Yanbao Zhang

In the past few decades, the least-squares reverse time migration (LSRTM) algorithm has been widely used to enhance images of complex subsurface structures by minimizing the data misfit function between the predicted and observed seismic data. However, this algorithm is sensitive to the accuracy of the migration velocity model, which, in the case of real data applications (generally obtained via tomography), always deviates from the true velocity model. Therefore, conventional LSRTM faces a cycle-skipping problem caused by a smeared image when using an inaccurate migration velocity model. To address the cycle-skipping problem, we have introduced an angle-domain LSRTM algorithm. Unlike the conventional LSRTM algorithm, our method updates the common source-propagation angle image gathers rather than the stacked image. An extended Born modeling operator in the common source-propagation angle domain is was derived, which reproduced kinematically accurate data in the presence of velocity errors. Our method can provide more focused images with high resolution as well as angle-domain common-image gathers (ADCIGs) with enhanced resolution and balanced amplitudes. However, because the velocity model is not updated, the provided image can have errors in depth. Synthetic and field examples are used to verify that our method can robustly improve the quality of the ADCIGs and the finally stacked images with affordable computational costs in the presence of velocity errors.


Geophysics ◽  
2020 ◽  
Vol 85 (5) ◽  
pp. S285-S297
Author(s):  
Zhina Li ◽  
Zhenchun Li ◽  
Qingqing Li ◽  
Qingyang Li ◽  
Miaomiao Sun ◽  
...  

The migration of multiples can provide complementary information about the subsurface, but crosstalk artifacts caused by the interference between different-order multiples reduce its reliability. To mitigate the crosstalk artifacts, least-squares reverse time migration (LSRTM) of multiples is suggested by some researchers. Multiples are more affected by attenuation than primaries because of the longer travel path. To avoid incorrect waveform matching during the inversion, we propose to include viscosity in the LSRTM implementation. A method of LSRTM of multiples is introduced based on a viscoacoustic wave equation, which is derived from the generalized standard linear solid model. The merit of the proposed method is that it not only compensates for the amplitude loss and phase change, which cannot be achieved by traditional RTM and LSRTM of multiples, but it also provides more information about the subsurface with fewer crosstalk artifacts by using multiples compared with the viscoacoustic LSRTM of primaries. Tests on sensitivity to the errors in the velocity model, the Q model, and the separated multiples reveal that accurate models and input multiples are vital to the image quality. Numerical tests on synthetic models and real data demonstrate the advantages of our approach in improving the quality of the image in terms of amplitude balancing and signal-to-noise ratio.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. S29-S40 ◽  
Author(s):  
Jizhong Yang ◽  
Yuzhu Liu ◽  
Yunyue Elita Li ◽  
Arthur Cheng ◽  
Liangguo Dong ◽  
...  

Direct imaging of the steeply dipping structures is challenging for conventional reverse time migration (RTM), especially when there are no strong reflectors in the migration velocity model. To address this issue, we have enhanced the imaging of the steeply dipping structures by incorporating the prismatic waves. We formulate the imaging problem in a nonlinear least-squares optimization framework because the prismatic waves cannot be linearly mapped from the model perturbation. Primary and prismatic waves are jointly imaged to provide a single consistent image that includes structures illuminated by both types of waves, avoiding the complexities in scaling and/or interpreting primary and prismatic images separately. A conjugate gradient algorithm is used to iteratively solve the least-squares normal equation. This inversion procedure can become unstable if directly using the recorded data for migration because it is hindered by the crosstalk caused by imaging primary waves with the prismatic imaging operator. Therefore, we isolate the prismatic waves from the recorded data and image them with the prismatic imaging operator. Our scheme only requires a kinematically accurate and smooth migration velocity model, without the need to explicitly embed the strong reflectors in the migration velocity model. Realistic 2D numerical examples demonstrate that our method can resolve the steeply dipping structures much better than conventional least-squares RTM of primary waves.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. S171-S185 ◽  
Author(s):  
Chuang Li ◽  
Jianping Huang ◽  
Zhenchun Li ◽  
Han Yu ◽  
Rongrong Wang

Least-squares migration (LSM) of seismic data is supposed to produce images of subsurface structures with better quality than standard migration if we have an accurate migration velocity model. However, LSM suffers from data mismatch problems and migration artifacts when noise pollutes the recorded profiles. This study has developed a reweighted least-squares reverse time migration (RWLSRTM) method to overcome the problems caused by such noise. We first verify that spiky noise and free-surface multiples lead to the mismatch problems and should be eliminated from the data residual. The primary- and multiple-guided weighting matrices are then derived for RWLSRTM to reduce the noise in the data residual. The weighting matrices impose constraints on the data residual such that spiky noise and free-surface multiple reflections are reduced whereas primary reflections are preserved. The weights for spiky noise and multiple reflections are controlled by a dynamic threshold parameter decreasing with iterations for better results. Finally, we use an iteratively reweighted least-squares algorithm to minimize the weighted data residual. We conduct numerical tests using the synthetic data and compared the results of this method with the results of standard LSRTM. The results suggest that RWLSRTM is more robust than standard LSRTM when the seismic data contain spiky noise and multiple reflections. Moreover, our method not only suppresses the migration artifacts, but it also accelerates the convergence.


Sign in / Sign up

Export Citation Format

Share Document