An elastic reverse-time migration method for vertically transversely isotropic (VTI) media

2017 ◽  
Author(s):  
ChengFeng Guo ◽  
XingHua Shi ◽  
XiangYu Fei ◽  
WenYa Feng ◽  
Qizhen Du2*
Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. S139-S150 ◽  
Author(s):  
Vladimir Li ◽  
Ilya Tsvankin ◽  
Tariq Alkhalifah

Extended images obtained from reverse time migration (RTM) contain information about the accuracy of the velocity field and subsurface illumination at different incidence angles. Here, we evaluate the influence of errors in the anisotropy parameters on the shape of the residual moveout (RMO) in P-wave RTM extended images for VTI (transversely isotropic with a vertical symmetry axis) media. Using the actual spatial distribution of the zero-dip NMO velocity ([Formula: see text]), which could be approximately estimated by conventional techniques, we analyze the extended images obtained with distorted fields of the parameters [Formula: see text] and [Formula: see text]. Differential semblance optimization (DSO) and stack-power estimates are employed to study the sensitivity of focusing to the anisotropy parameters. We also build angle gathers to facilitate interpretation of the shape of RMO in the extended images. The results show that the signature of [Formula: see text] is dip-dependent, whereas errors in [Formula: see text] cause defocusing only if that parameter is laterally varying. Hence, earlier results regarding the influence of [Formula: see text] and [Formula: see text] on reflection moveout and migration velocity analysis remain generally valid in the extended image space for complex media. The dependence of RMO on errors in the anisotropy parameters provides essential insights for anisotropic wavefield tomography using extended images.


2020 ◽  
Vol 38 (2) ◽  
Author(s):  
Razec Cezar Sampaio Pinto da Silva Torres ◽  
Leandro Di Bartolo

ABSTRACT. Reverse time migration (RTM) is one of the most powerful methods used to generate images of the subsurface. The RTM was proposed in the early 1980s, but only recently it has been routinely used in exploratory projects involving complex geology – Brazilian pre-salt, for example. Because the method uses the two-way wave equation, RTM is able to correctly image any kind of geological environment (simple or complex), including those with anisotropy. On the other hand, RTM is computationally expensive and requires the use of computer clusters. This paper proposes to investigate the influence of anisotropy on seismic imaging through the application of RTM for tilted transversely isotropic (TTI) media in pre-stack synthetic data. This work presents in detail how to implement RTM for TTI media, addressing the main issues and specific details, e.g., the computational resources required. A couple of simple models results are presented, including the application to a BP TTI 2007 benchmark model.Keywords: finite differences, wave numerical modeling, seismic anisotropy. Migração reversa no tempo em meios transversalmente isotrópicos inclinadosRESUMO. A migração reversa no tempo (RTM) é um dos mais poderosos métodos utilizados para gerar imagens da subsuperfície. A RTM foi proposta no início da década de 80, mas apenas recentemente tem sido rotineiramente utilizada em projetos exploratórios envolvendo geologia complexa, em especial no pré-sal brasileiro. Por ser um método que utiliza a equação completa da onda, qualquer configuração do meio geológico pode ser corretamente tratada, em especial na presença de anisotropia. Por outro lado, a RTM é dispendiosa computacionalmente e requer o uso de clusters de computadores por parte da indústria. Este artigo apresenta em detalhes uma implementação da RTM para meios transversalmente isotrópicos inclinados (TTI), abordando as principais dificuldades na sua implementação, além dos recursos computacionais exigidos. O algoritmo desenvolvido é aplicado a casos simples e a um benchmark padrão, conhecido como BP TTI 2007.Palavras-chave: diferenças finitas, modelagem numérica de ondas, anisotropia sísmica.


Geophysics ◽  
1983 ◽  
Vol 48 (11) ◽  
pp. 1514-1524 ◽  
Author(s):  
Edip Baysal ◽  
Dan D. Kosloff ◽  
John W. C. Sherwood

Migration of stacked or zero‐offset sections is based on deriving the wave amplitude in space from wave field observations at the surface. Conventionally this calculation has been carried out through a depth extrapolation. We examine the alternative of carrying out the migration through a reverse time extrapolation. This approach may offer improvements over existing migration methods, especially in cases of steeply dipping structures with strong velocity contrasts. This migration method is tested using appropriate synthetic data sets.


2016 ◽  
Author(s):  
Jinqiang Huang ◽  
Daojun Si ◽  
Zhenchun Li ◽  
Jianping Huang

Geophysics ◽  
2006 ◽  
Vol 71 (1) ◽  
pp. S29-S35 ◽  
Author(s):  
Tariq Alkhalifah

Using a newly developed nonhyperbolic offset-mid-point traveltime equation for prestack Kirchhoff time migration, instead of the conventional double-square-root (DSR) equation, results in overall better images from anisotropic data. Specifically, prestack Kirchhoff time migration for transversely isotropic media with a vertical symmetry axis (VTI media) is implemented using an analytical offset-midpoint traveltime equation that represents the equivalent of Cheop's pyramid for VTI media. It includes higher-order terms necessary to better handle anisotropy as well as vertical inhomogeneity. Application of this enhanced Kirchhoff time-migration method to the anisotropic Marmousi data set demonstrates the effectiveness of the approach. Further application of the method to field data from Trinidad results in sharper reflectivity images of the subsurface, with the faults better focused and positioned than with images obtained using isotropic methods. The superiority of the anisotropic time migration is evident in the flatness of the image gathers.


Sign in / Sign up

Export Citation Format

Share Document