tti media
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 19)

H-INDEX

11
(FIVE YEARS 1)

Geophysics ◽  
2021 ◽  
pp. 1-57
Author(s):  
Bowen Li ◽  
Alexey Stovas

Characterizing the kinematics of seismic waves in elastic vertical transversely isotropic (VTI) media involves four independent parameters. To reduce the complexity, the acoustic approximation for P-waves reduces the number of required parameters to three by setting the vertical S-wave velocity to zero. However, since only the SV-wave phase velocities parallel or perpendicular to the symmetry axis are indirectly set to zero, the acoustic approximation leads to coupled P-wave components and SV-wave artifacts. The new acoustic approximation suggests setting the vertical S-wave velocity as a phase angle-dependent variable so that the SV-wave phase velocity is zero at all phase angles. We find that manipulating this parameter is a valid way for P-wave approximation, but doing so inevitably leads to zero- or non-zero-valued spurious SV-wave components. Thus, we have developed a novel approach to efficiently approximate and thoroughly separate the two wave modes in VTI media. First, the exact P- and SV-wave phase velocity expressions are rewritten by introducing an auxiliary function. After confirming the insensitivity of this function, we construct a new expression for it and obtain simplified P- and SV-wave phase velocity expressions, which are three- and four-parameter, respectively. This approximation process leads to the same reasonable error for both wave modes. Accuracy analysis indicates that for the P-wave, the overall accuracy performance of our approach is comparable to that of some existing three-parameter approximations. We then derive the corresponding P- and SV-wave equations in tilted transversely isotropic (TTI) media and provide two available solutions, the hybrid finite-difference/pseudo-spectral scheme and the low-rank approach. Numerical examples illustrate the separability and high accuracy of the proposed P- and SV-wave simulation methods in TTI media.


Author(s):  
Jianguang Han ◽  
Qingtian Lu ◽  
Hao Zhang ◽  
Bingluo Gu ◽  
Zhiwei Liu
Keyword(s):  

2020 ◽  
Vol 38 (2) ◽  
Author(s):  
Razec Cezar Sampaio Pinto da Silva Torres ◽  
Leandro Di Bartolo

ABSTRACT. Reverse time migration (RTM) is one of the most powerful methods used to generate images of the subsurface. The RTM was proposed in the early 1980s, but only recently it has been routinely used in exploratory projects involving complex geology – Brazilian pre-salt, for example. Because the method uses the two-way wave equation, RTM is able to correctly image any kind of geological environment (simple or complex), including those with anisotropy. On the other hand, RTM is computationally expensive and requires the use of computer clusters. This paper proposes to investigate the influence of anisotropy on seismic imaging through the application of RTM for tilted transversely isotropic (TTI) media in pre-stack synthetic data. This work presents in detail how to implement RTM for TTI media, addressing the main issues and specific details, e.g., the computational resources required. A couple of simple models results are presented, including the application to a BP TTI 2007 benchmark model.Keywords: finite differences, wave numerical modeling, seismic anisotropy. Migração reversa no tempo em meios transversalmente isotrópicos inclinadosRESUMO. A migração reversa no tempo (RTM) é um dos mais poderosos métodos utilizados para gerar imagens da subsuperfície. A RTM foi proposta no início da década de 80, mas apenas recentemente tem sido rotineiramente utilizada em projetos exploratórios envolvendo geologia complexa, em especial no pré-sal brasileiro. Por ser um método que utiliza a equação completa da onda, qualquer configuração do meio geológico pode ser corretamente tratada, em especial na presença de anisotropia. Por outro lado, a RTM é dispendiosa computacionalmente e requer o uso de clusters de computadores por parte da indústria. Este artigo apresenta em detalhes uma implementação da RTM para meios transversalmente isotrópicos inclinados (TTI), abordando as principais dificuldades na sua implementação, além dos recursos computacionais exigidos. O algoritmo desenvolvido é aplicado a casos simples e a um benchmark padrão, conhecido como BP TTI 2007.Palavras-chave: diferenças finitas, modelagem numérica de ondas, anisotropia sísmica.


2020 ◽  
Vol 223 (1) ◽  
pp. 57-76
Author(s):  
Ju-Won Oh ◽  
Youngjae Shin ◽  
Tariq Alkhalifah ◽  
Dong-Joo Min

SUMMARY Seismic anisotropy is an important physical phenomenon that significantly affects wave propagation in complex sedimentary basins. When geological structures exhibit steep dips or severe folding, the symmetry axis of the transversely isotropic (TI) representation of the region can be rotated, leading to tilted transversely isotropic (TTI) media. We seek to find the optimal full-waveform inversion (FWI) strategy to estimate both the seismic velocities and the anisotropic parameters, including the tilt angle, in the presence of elastic TTI media. We first formulate the forward and inverse problems for elastic TTI media and analyse the radiation patterns of the model parameters. Based on the analyses of the radiation patterns, we propose two similar multistage FWI strategies that add inversion parameters over three stages, beginning with the isotropic parameters (horizontal P- and vertical S-wave velocity) and moving to the anisotropic parameters; the tilt angle is directly inverted in the last stage. Since diving waves, which are useful for providing long-wavelength updates, are mainly controlled by horizontal motion in anisotropic media, it is reasonable to choose the horizontal P-wave velocity rather than the vertical P-wave velocity. Then, the anisotropic parameters are inverted mainly using the reflected waves based on the isotropic background model built in the first stage. The main difference between the two multistage FWI strategies is whether the anisotropic parameter η is inverted. Comparing the two multistage FWI strategies with the simultaneous inversion strategy for a downsized version of the synthetic BP TTI model, we confirm that the multistage FWI strategies yield better inversion results than the simultaneous inversion strategy. When we compare the two multistage FWI strategies with each other for surface seismic data, ignoring η during the FWI process (focused multistage FWI) yields better inversion results for the tilt angle than those obtained with the inversion of η because η has less influence on the FWI than the other parameters and is not recovered well, which plays a role in degrading the tilt angle. Numerical examples support our conclusions that the focused multistage FWI strategy (neglecting η) is the optimal FWI strategy for TTI media and achieves computational efficiency for surface seismic data.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. C71-C89 ◽  
Author(s):  
Xinru Mu ◽  
Jianping Huang ◽  
Peng Yong ◽  
Jinqiang Huang ◽  
Xu Guo ◽  
...  

Seismic forward modeling in tilted transverse isotropic (TTI) media is crucial for the application of reverse time migration and full-waveform inversion. Modeling based on conventional coupled pseudoacoustic wave equations not only generates SV-wave artifacts, but it also suffers from instabilities in which the anisotropy parameter [Formula: see text]. To address these issues, we have started with the exact vertical transversely isotropic phase velocity formula and developed novel pure qP- and qSV-wave governing equations in TTI media by using the optimal quadratic approximation. For the convenience of using finite-difference (FD) method to solve the new pure qP- and qSV-wave wave equations, we decompose the equations into a combination of a time-space-domain wave equation that can be solved by the FD method and a Poisson equation that can be solved by the pseudospectral method. We find that the high-frequency errors caused by the pseudospectral method and the usual truncation errors in FD schemes may be responsible for the instability of the numerical simulations. To stabilize the computation, we design a 2D low-pass filtering operator to eliminate severe high-frequency numerical noise. Several numerical examples demonstrate that modeling using the new pure qP-wave equations does not have qSV-wave artifacts interference and is stable for [Formula: see text]. Our results indicate that our method can achieve highly accurate and stable modeling results even in extremely complex TTI media.


Sign in / Sign up

Export Citation Format

Share Document