scholarly journals Analysis of RTM extended images for VTI media

Geophysics ◽  
2016 ◽  
Vol 81 (3) ◽  
pp. S139-S150 ◽  
Author(s):  
Vladimir Li ◽  
Ilya Tsvankin ◽  
Tariq Alkhalifah

Extended images obtained from reverse time migration (RTM) contain information about the accuracy of the velocity field and subsurface illumination at different incidence angles. Here, we evaluate the influence of errors in the anisotropy parameters on the shape of the residual moveout (RMO) in P-wave RTM extended images for VTI (transversely isotropic with a vertical symmetry axis) media. Using the actual spatial distribution of the zero-dip NMO velocity ([Formula: see text]), which could be approximately estimated by conventional techniques, we analyze the extended images obtained with distorted fields of the parameters [Formula: see text] and [Formula: see text]. Differential semblance optimization (DSO) and stack-power estimates are employed to study the sensitivity of focusing to the anisotropy parameters. We also build angle gathers to facilitate interpretation of the shape of RMO in the extended images. The results show that the signature of [Formula: see text] is dip-dependent, whereas errors in [Formula: see text] cause defocusing only if that parameter is laterally varying. Hence, earlier results regarding the influence of [Formula: see text] and [Formula: see text] on reflection moveout and migration velocity analysis remain generally valid in the extended image space for complex media. The dependence of RMO on errors in the anisotropy parameters provides essential insights for anisotropic wavefield tomography using extended images.

Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. C295-C307 ◽  
Author(s):  
Pengfei Yu ◽  
Jianhua Geng ◽  
Chenlong Wang

Quasi-P (qP)-wavefield separation is a crucial step for elastic P-wave imaging in anisotropic media. It is, however, notoriously challenging to quickly and accurately obtain separated qP-wavefields. Based on the concepts of the trace of the stress tensor and the pressure fields defined in isotropic media, we have developed a new method to rapidly separate the qP-wave in a transversely isotropic medium with a vertical symmetry axis (VTI) by synthesized pressure from ocean-bottom seismic (OBS) data as a preprocessing step for elastic reverse time migration (ERTM). Another key aspect of OBS data elastic wave imaging is receiver-side 4C records back extrapolation. Recent studies have revealed that receiver-side tensorial extrapolation in isotropic media with ocean-bottom 4C records can sufficiently suppress nonphysical waves produced during receiver-side reverse time wavefield extrapolation. Similarly, the receiver-side 4C records tensorial extrapolation was extended to ERTM in VTI media in our studies. Combining a separated qP-wave by synthesizing pressure and receiver-side wavefield reverse time tensorial extrapolation with the crosscorrelation imaging condition, we have developed a robust, fast, flexible, and elastic imaging quality improved method in VTI media for OBS data.


Geophysics ◽  
2011 ◽  
Vol 76 (2) ◽  
pp. S65-S75 ◽  
Author(s):  
Eric Duveneck ◽  
Peter M. Bakker

We present an approach for P-wave modeling in inhomogeneous transversely isotropic media with tilted symmetry axis (TTI media), suitable for anisotropic reverse-time migration. The proposed approach is based on wave equations derived from first principles — the equations of motion and Hooke’s law — under the acoustic TI approximation. Consequently, no assumptions are made about the spatial variation of medium parameters. A rotation of the stress and strain tensors to a local coordinate system, aligned with the TI-symmetry axis, makes it possible to benefit from the simple and sparse form of the TI-elastic tensor in that system. The resulting wave equations can be formulated either as a set of five first-order or as a set of two second-order partial differential equations. For the constant-density case, the second-order TTI wave equations involve mixed and nonmixed second-order spatial derivatives with respect to global, nonrotated coordinates. We propose a numerical implementation of these equations using high-order centered finite differences. To minimize modeling artifacts related to the use of centered first-derivative operators, we use discrete second-derivative operators for the nonmixed second-order spatial derivatives and repeated discrete first-derivative operators for the mixed derivatives. Such a combination of finite-difference operators leads to a stable wave propagator, provided that the operators are designed properly. In practice, stability is achieved by slightly weighting down terms that contain mixed derivatives. This has a minor, practically negligible, effect on the kinematics of wave propagation. The stability of the presented scheme in inhomogeneous TTI models with rapidly varying anisotropic symmetry axis direction is demonstrated with numerical examples.


Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. T37-T45 ◽  
Author(s):  
Ge Zhan ◽  
Reynam C. Pestana ◽  
Paul L. Stoffa

Conventional modeling and migration for tilted transversely isotropic (TTI) media may suffer from numerical instabilities and shear wave artifacts due to the coupling of the P-wave and SV-wave modes in the TTI coupled equations. Starting with the separated P- and SV-phase velocity expressions for vertical transversely isotropic (VTI) media, we extend these decoupled equations for modeling and reverse time migration (RTM) in acoustic TTI media. Compared with the TTI coupled equations published in the geophysical literature, the new TTI decoupled equations provide a more stable solution due to the complete separation of the P-wave and SV-wave modes. The pseudospectral method is the most convenient method to implement these equations due to the form of wavenumber expressions and has the added benefit of being highly accurate and thus avoiding numerical dispersion. The rapid expansion method (REM) in time is employed to produce a broad band numerically stable time evolution of the wavefields. Synthetic results validate the proposed TTI decoupled equations and show that modeling and RTM in TTI media with the decoupled equations remain numerically stable even for models with strong anisotropy and sharp contrasts.


2017 ◽  
Author(s):  
ChengFeng Guo ◽  
XingHua Shi ◽  
XiangYu Fei ◽  
WenYa Feng ◽  
Qizhen Du2*

2020 ◽  
Vol 38 (2) ◽  
Author(s):  
Razec Cezar Sampaio Pinto da Silva Torres ◽  
Leandro Di Bartolo

ABSTRACT. Reverse time migration (RTM) is one of the most powerful methods used to generate images of the subsurface. The RTM was proposed in the early 1980s, but only recently it has been routinely used in exploratory projects involving complex geology – Brazilian pre-salt, for example. Because the method uses the two-way wave equation, RTM is able to correctly image any kind of geological environment (simple or complex), including those with anisotropy. On the other hand, RTM is computationally expensive and requires the use of computer clusters. This paper proposes to investigate the influence of anisotropy on seismic imaging through the application of RTM for tilted transversely isotropic (TTI) media in pre-stack synthetic data. This work presents in detail how to implement RTM for TTI media, addressing the main issues and specific details, e.g., the computational resources required. A couple of simple models results are presented, including the application to a BP TTI 2007 benchmark model.Keywords: finite differences, wave numerical modeling, seismic anisotropy. Migração reversa no tempo em meios transversalmente isotrópicos inclinadosRESUMO. A migração reversa no tempo (RTM) é um dos mais poderosos métodos utilizados para gerar imagens da subsuperfície. A RTM foi proposta no início da década de 80, mas apenas recentemente tem sido rotineiramente utilizada em projetos exploratórios envolvendo geologia complexa, em especial no pré-sal brasileiro. Por ser um método que utiliza a equação completa da onda, qualquer configuração do meio geológico pode ser corretamente tratada, em especial na presença de anisotropia. Por outro lado, a RTM é dispendiosa computacionalmente e requer o uso de clusters de computadores por parte da indústria. Este artigo apresenta em detalhes uma implementação da RTM para meios transversalmente isotrópicos inclinados (TTI), abordando as principais dificuldades na sua implementação, além dos recursos computacionais exigidos. O algoritmo desenvolvido é aplicado a casos simples e a um benchmark padrão, conhecido como BP TTI 2007.Palavras-chave: diferenças finitas, modelagem numérica de ondas, anisotropia sísmica.


Author(s):  
Wiktor Weibull ◽  
Børge Arntsen ◽  
Marianne Houbiers ◽  
Joachim Mispel

Geophysics ◽  
2021 ◽  
pp. 1-60
Author(s):  
Chuang Li ◽  
Zhaoqi Gao ◽  
Jinghuai Gao ◽  
Feipeng Li ◽  
Tao Yang

Angle-domain common-image gathers (ADCIGs) that can be used for migration velocity analysis and amplitude versus angle analysis are important for seismic exploration. However, because of limited acquisition geometry and seismic frequency band, the ADCIGs extracted by reverse time migration (RTM) suffer from illumination gaps, migration artifacts, and low resolution. We have developed a reflection angle-domain pseudo-extended plane-wave least-squares RTM method for obtaining high-quality ADCIGs. We build the mapping relations between the ADCIGs and the plane-wave sections using an angle-domain pseudo-extended Born modeling operator and an adjoint operator, based on which we formulate the extraction of ADCIGs as an inverse problem. The inverse problem is iteratively solved by a preconditioned stochastic conjugate gradient method, allowing for reduction in computational cost by migrating only a subset instead of the whole dataset and improving image quality thanks to preconditioners. Numerical tests on synthetic and field data verify that the proposed method can compensate for illumination gaps, suppress migration artifacts, and improve resolution of the ADCIGs and the stacked images. Therefore, compared with RTM, the proposed method provides a more reliable input for migration velocity analysis and amplitude versus angle analysis. Moreover, it also provides much better stacked images for seismic interpretation.


2016 ◽  
Author(s):  
Jinqiang Huang ◽  
Daojun Si ◽  
Zhenchun Li ◽  
Jianping Huang

Sign in / Sign up

Export Citation Format

Share Document