Elastic least-squares reverse time migration based on P- and S-wavefield separation

2018 ◽  
Author(s):  
Yingming Qu ◽  
Jinli Li ◽  
Zhenchun Li
2021 ◽  
Vol 1719 (1) ◽  
pp. 012030
Author(s):  
Phudit Sombutsirinun ◽  
Chaiwoot Boonyasiriwat

Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. S111-S127 ◽  
Author(s):  
Qizhen Du ◽  
ChengFeng Guo ◽  
Qiang Zhao ◽  
Xufei Gong ◽  
Chengxiang Wang ◽  
...  

The scalar images (PP, PS, SP, and SS) of elastic reverse time migration (ERTM) can be generated by applying an imaging condition as crosscorrelation of pure wave modes. In conventional ERTM, Helmholtz decomposition is commonly applied in wavefield separation, which leads to a polarity reversal problem in converted-wave images because of the opposite polarity distributions of the S-wavefields. Polarity reversal of the converted-wave image will cause destructive interference when stacking over multiple shots. Besides, in the 3D case, the curl calculation generates a vector S-wave, which makes it impossible to produce scalar PS, SP, and SS images with the crosscorrelation imaging condition. We evaluate a vector-based ERTM (VB-ERTM) method to address these problems. In VB-ERTM, an amplitude-preserved wavefield separation method based on decoupled elastic wave equation is exploited to obtain the pure wave modes. The output separated wavefields are both vectorial. To obtain the scalar images, the scalar imaging condition in which the scalar product of two vector wavefields with source-normalized illumination is exploited to produce scalar images instead of correlating Cartesian components or magnitude of the vector P- and S-wave modes. Compared with alternative methods for correcting the polarity reversal of PS and SP images, our ERTM solution is more stable and simple. Besides these four scalar images, the VB-ERTM method generates another PP-mode image by using the auxiliary stress wavefields. Several 2D and 3D numerical examples are evaluated to demonstrate the potential of our ERTM method.


Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Milad Farshad ◽  
Hervé Chauris

Elastic least-squares reverse time migration is the state-of-the-art linear imaging technique to retrieve high-resolution quantitative subsurface images. A successful application requires many migration/modeling cycles. To accelerate the convergence rate, various pseudoinverse Born operators have been proposed, providing quantitative results within a single iteration, while having roughly the same computational cost as reverse time migration. However, these are based on the acoustic approximation, leading to possible inaccurate amplitude predictions as well as the ignorance of S-wave effects. To solve this problem, we extend the pseudoinverse Born operator from acoustic to elastic media to account for the elastic amplitudes of PP reflections and provide an estimate of physical density, P- and S-wave impedance models. We restrict the extension to marine environment, with the recording of pressure waves at the receiver positions. Firstly, we replace the acoustic Green's functions by their elastic version, without modifying the structure of the original pseudoinverse Born operator. We then apply a Radon transform to the results of the first step to calculate the angle-dependent response. Finally, we simultaneously invert for the physical parameters using a weighted least-squares method. Through numerical experiments, we first illustrate the consequences of acoustic approximation on elastic data, leading to inaccurate parameter inversion as well as to artificial reflector inclusion. Then we demonstrate that our method can simultaneously invert for elastic parameters in the presence of complex uncorrelated structures, inaccurate background models, and Gaussian noisy data.


Sign in / Sign up

Export Citation Format

Share Document