From acoustic to elastic inverse extended Born modeling: a first insight in the marine environment

Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Milad Farshad ◽  
Hervé Chauris

Elastic least-squares reverse time migration is the state-of-the-art linear imaging technique to retrieve high-resolution quantitative subsurface images. A successful application requires many migration/modeling cycles. To accelerate the convergence rate, various pseudoinverse Born operators have been proposed, providing quantitative results within a single iteration, while having roughly the same computational cost as reverse time migration. However, these are based on the acoustic approximation, leading to possible inaccurate amplitude predictions as well as the ignorance of S-wave effects. To solve this problem, we extend the pseudoinverse Born operator from acoustic to elastic media to account for the elastic amplitudes of PP reflections and provide an estimate of physical density, P- and S-wave impedance models. We restrict the extension to marine environment, with the recording of pressure waves at the receiver positions. Firstly, we replace the acoustic Green's functions by their elastic version, without modifying the structure of the original pseudoinverse Born operator. We then apply a Radon transform to the results of the first step to calculate the angle-dependent response. Finally, we simultaneously invert for the physical parameters using a weighted least-squares method. Through numerical experiments, we first illustrate the consequences of acoustic approximation on elastic data, leading to inaccurate parameter inversion as well as to artificial reflector inclusion. Then we demonstrate that our method can simultaneously invert for elastic parameters in the presence of complex uncorrelated structures, inaccurate background models, and Gaussian noisy data.

Geophysics ◽  
2020 ◽  
Vol 85 (1) ◽  
pp. S47-S64
Author(s):  
Yang Zhao ◽  
Tao Liu ◽  
Xueyi Jia ◽  
Hongwei Liu ◽  
Zhiguang Xue ◽  
...  

Angle-domain common-image gathers (ADCIGs) from elastic reverse time migration (ERTM) are valuable tools for seismic elastic velocity estimation. Traditional ADCIGs are based on the concept of common-offset domains, but common-shot domain implementations are often favored for computational cost considerations. Surface-offset gathers (SOGs) built from common-offset migration may serve as an alternative to the common-shot ADCIGs. We have developed a theoretical kinematic framework between these two domains, and we determined that the common SOG gives an alternative measurement of kinematic correctness in the presence of incorrect velocity. Specifically, we exploit analytical expressions for the image misposition between these two domains, with respect to the traveltime perturbation caused by velocity errors. Four formulations of the PP and PS residual moveout functions are derived and provide insightful information of the velocity error, angle, and PS velocity ratio contained in ERTM gathers. The analytical solutions are validated with homogeneous examples with a series of varied parameters. We found that the SOGs may perform in the way of simplicity and linearity as an alternative to the common-shot migration. To make a full comparison with ADCIGs, we have developed a cost-effective workflow of ERTM SOGs. A fast vector P- and S-wave decomposition can be obtained via spatial gradients at selected time steps. A selected ERTM imaging condition is then modified in which the migration is done by offset groups between each source and receiver pair for each P- and S-wave decomposition. Two synthetic (marine and land) examples are used to demonstrate the feasibility of our methods.


Geophysics ◽  
2020 ◽  
pp. 1-61
Author(s):  
Janaki Vamaraju ◽  
Jeremy Vila ◽  
Mauricio Araya-Polo ◽  
Debanjan Datta ◽  
Mohamed Sidahmed ◽  
...  

Migration techniques are an integral part of seismic imaging workflows. Least-squares reverse time migration (LSRTM) overcomes some of the shortcomings of conventional migration algorithms by compensating for illumination and removing sampling artifacts to increase spatial resolution. However, the computational cost associated with iterative LSRTM is high and convergence can be slow in complex media. We implement pre-stack LSRTM in a deep learning framework and adopt strategies from the data science domain to accelerate convergence. The proposed hybrid framework leverages the existing physics-based models and machine learning optimizers to achieve better and cheaper solutions. Using a time-domain formulation, we show that mini-batch gradients can reduce the computation cost by using a subset of total shots for each iteration. Mini-batch approach does not only reduce source cross-talk but also is less memory intensive. Combining mini-batch gradients with deep learning optimizers and loss functions can improve the efficiency of LSRTM. Deep learning optimizers such as the adaptive moment estimation are generally well suited for noisy and sparse data. We compare different optimizers and demonstrate their efficacy in mitigating migration artifacts. To accelerate the inversion, we adopt the regularised Huber loss function in conjunction. We apply these techniques to 2D Marmousi and 3D SEG/EAGE salt models and show improvements over conventional LSRTM baselines. The proposed approach achieves higher spatial resolution in less computation time measured by various qualitative and quantitative evaluation metrics.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. S399-S408 ◽  
Author(s):  
Yunyue Elita Li ◽  
Yue Du ◽  
Jizhong Yang ◽  
Arthur Cheng ◽  
Xinding Fang

Elastic wave imaging has been a significant challenge in the exploration industry due to the complexities in wave physics and numerical implementation. We have separated the governing equations for P- and S-wave propagation without the assumptions of homogeneous Lamé parameters to capture the mode conversion between the two body waves in an isotropic, constant-density medium. The resulting set of two coupled second-order equations for P- and S-potentials clearly demonstrates that mode conversion only occurs at the discontinuities of the shear modulus. Applying the Born approximation to the new equations, we derive the PP, PS, SP, and SS imaging conditions from the first gradients of waveform matching objective functions. The resulting images are consistent with the physical perturbations of the elastic parameters, and, hence, they are automatically free of the polarity reversal artifacts in the converted images. When implementing elastic reverse time migration (RTM), we find that scalar wave equations can be used to back propagate the recorded P-potential, as well as individual components in the vector field of the S-potential. Compared with conventional elastic RTM, the proposed elastic RTM implementation using acoustic propagators not only simplifies the imaging condition, it but also reduces the computational cost and the artifacts in the images. We have determined the accuracy of our method using 2D and 3D numerical examples.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. S151-S172 ◽  
Author(s):  
Peng Guo ◽  
George A. McMechan

Low values of P- and S-wave quality factors [Formula: see text] and [Formula: see text] result in strong intrinsic seismic attenuation in seismic modeling and imaging. We use a linearized waveform inversion approach, by generalizing least-squares reverse time migration (LSRTM) for viscoelastic media ([Formula: see text]-LSRTM), to compensate for the attenuation loss for P- and S-images. We use the first-order particle velocity, stress, and memory variable equations, with explicit [Formula: see text] in the formulations, based on the generalized standard linear solid, as the forward-modeling operator. The linearized two-way viscoelastic modeling operator is obtained with modulus perturbations introduced for the relaxed P- and S-moduli. The viscoelastic adjoint operator and the P- and S-imaging conditions for modulus perturbations are derived using the adjoint-state method and an augmented Lagrangian functional. [Formula: see text]-LSRTM solves the viscoelastic linearized modeling operator for generating synthetic data, and the adjoint operator is used for back propagating the data residual. With the correct background velocity model, and with the inclusion of [Formula: see text] in the modeling and imaging, [Formula: see text]-LSRTM is capable of iteratively updating the P- and S-modulus perturbations, and compensating the attenuation loss caused by [Formula: see text] and [Formula: see text], in the direction of minimizing the data residual between the observed and predicted data. Compared with elastic LSRTM results, the P- and S-modulus perturbation images from [Formula: see text]-LSRTM have stronger (closer to the true modulus perturbation), and more continuous, amplitudes for the structures in and beneath low-[Formula: see text] zones. The residuals in the image space obtained using the correctly parameterized [Formula: see text]-LSRTM are much smaller than those obtained using the incorrectly parameterized elastic LSRTM. However, the data residuals from [Formula: see text]-LSRTM and elastic LSRTM are similar because elastic Born modeling with a weak reflector in the image produces similar reflection amplitudes with viscoelastic Born modeling with a strong reflector.


Geophysics ◽  
2020 ◽  
Vol 85 (2) ◽  
pp. S115-S134
Author(s):  
Wenlei Gao ◽  
Gian Matharu ◽  
Mauricio D. Sacchi

Least-squares reverse time migration (LSRTM) has become increasingly popular for complex wavefield imaging due to its ability to equalize image amplitudes, attenuate migration artifacts, handle incomplete and noisy data, and improve spatial resolution. The major drawback of LSRTM is the considerable computational cost incurred by performing migration/demigration at each iteration of the optimization. To ameliorate the computational cost, we introduced a fast method to solve the LSRTM problem in the image domain. Our method is based on a new factorization that approximates the Hessian using a superposition of Kronecker products. The Kronecker factors are small matrices relative to the size of the Hessian. Crucially, the factorization is able to honor the characteristic block-band structure of the Hessian. We have developed a computationally efficient algorithm to estimate the Kronecker factors via low-rank matrix completion. The completion algorithm uses only a small percentage of preferentially sampled elements of the Hessian matrix. Element sampling requires computation of the source and receiver Green’s functions but avoids explicitly constructing the entire Hessian. Our Kronecker-based factorization leads to an imaging technique that we name Kronecker-LSRTM (KLSRTM). The iterative solution of the image-domain KLSRTM is fast because we replace computationally expensive migration/demigration operations with fast matrix multiplications involving small matrices. We first validate the efficacy of our method by explicitly computing the Hessian for a small problem. Subsequent 2D numerical tests compare LSRTM with KLSRTM for several benchmark models. We observe that KLSRTM achieves near-identical images to LSRTM at a significantly reduced computational cost (approximately 5–15× faster); however, KLSRTM has an increased, yet manageable, memory cost.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. S383-S398 ◽  
Author(s):  
Chenlong Wang ◽  
Jiubing Cheng ◽  
Børge Arntsen

Recording P- and S-wave modes acquires more information related to rock properties of the earth’s interior. Elastic migration, as a part of multicomponent seismic data processing, potentially offers a great improvement over conventional acoustic migration to create a spatial image of some medium properties. In the framework of elastic reverse time migration, we have developed new scalar and vector imaging conditions assisted by efficient polarization-based mode decoupling to avoid crosstalk among the different wave modes for isotropic and transversely isotropic media. For the scalar imaging, we corrected polarity reversal of zero-lag PS images using the local angular attributes on the fly of angle-domain imaging. For the vector imaging, we naturally used the polarization information in the decoupled single-mode vector fields to automatically avoid the polarity reversal and to estimate the local angular attributes for angle-domain imaging. Examples of increasing complexity in 2D and 3D cases found that the proposed approaches can be used to obtain a physically interpretable image and angle-domain common-image gather at an acceptable computational cost. Decoupling and imaging the 3D S-waves involves some complexity, which has not been addressed in the literature. For this reason, we also attempted at illustrating the physical contents of the two separated S-wave modes and their contribution to seismic full-wave imaging.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R725-R739 ◽  
Author(s):  
Kai Yang ◽  
Jianfeng Zhang

The Born approximation and the Kirchhoff approximation are two frameworks that are extensively used in solving seismic migration/inversion problems. Both approximations assume a linear relationship between the primary reflected/scattered data to the corresponding physical model. However, different approximations result in different behaviors. For least-squares reverse time migration (LSRTM), most of the algorithms are constructed based on Born approximation. We have constructed a pair of Kirchhoff modeling and migration operators based on the Born modeling operator and the connection between the perturbation model and the reflectivity model, and then we compared the different performances between Born and Kirchhoff operators for LSRTM. Numerical examples on Marmousi model and SEAM 2D salt model indicate that LSRTM with Kirchhoff operators is a better alternative to that with Born operators for imaging complex structures. To reduce the computational cost, we also investigate a strategy by restricting the propagation of the background wavefield to a stopping time rather than the maximum recording time. And this stopping time can be chosen as half of the maximum recording time. This computational strategy can be used in LSRTM procedures of predicting the primary reflected data, calculating the step length, and computing the gradient. Theoretical analyses and numerical experiments are given to justify this computational strategy for LSRTM.


2021 ◽  
pp. 1-17
Author(s):  
Yingming Qu ◽  
Worral Qurmet ◽  
Chang Zhou ◽  
Chongpeng Huang ◽  
Zhenchun Li

Geophysics ◽  
2017 ◽  
Vol 82 (3) ◽  
pp. S271-S291 ◽  
Author(s):  
Bingluo Gu ◽  
Zhenchun Li ◽  
Peng Yang ◽  
Wencai Xu ◽  
Jianguang Han

We have developed the theory and synthetic tests of elastic least-squares reverse time migration (ELSRTM). In this method, a least-squares reverse time migration algorithm is used to image multicomponent seismic data based on the first-order elastic velocity-stress wave equation, in which the linearized elastic modeling equations are used for forward modeling and its adjoint equations are derived based on the adjoint-state method for back propagating the data residuals. Also, we have developed another ELSRTM scheme based on the wavefield separation technique, in which the P-wave image is obtained using P-wave forward and adjoint wavefields and the S-wave image is obtained using P-wave forward and S-wave adjoint wavefields. In this way, the crosstalk artifacts can be minimized to a significant extent. In general, seismic data inevitably contain noise. We apply the hybrid [Formula: see text] misfit function to the ELSRTM algorithm to improve the robustness of our ELSRTM to noise. Numerical tests on synthetic data reveal that our ELSRTM, when compared with elastic reverse time migration, can produce images with higher spatial resolution, more-balanced amplitudes, and fewer artifacts. Moreover, the hybrid [Formula: see text] misfit function makes the ELSRTM more robust than the [Formula: see text] misfit function in the presence of noise.


Sign in / Sign up

Export Citation Format

Share Document