The Monitoring and Control Platform Set up and Application for Seismic Data Acquisition

Author(s):  
Ling Zhenghong ◽  
Zhang Weihong ◽  
Xu Youlin ◽  
Wang Qingyong ◽  
Wang Xiaoxiao
2012 ◽  
Vol 253-255 ◽  
pp. 705-715 ◽  
Author(s):  
Mohamed Elbanhawi ◽  
Milan Simic

This paper presents one application of industrial robots in the automation of renewable energy production. The robot supports remote performance monitoring and maintenance of salinity gradient solar ponds. The details of the design, setup and the use of the robot sampling station and the remote Data Acquisition (DAQ) system are given here. The use of a robot arm, to position equipment and sensors, provides accurate and reliable real time data needed for autonomous monitoring and control of this type of green energy production. Robot upgrade of solar ponds can be easily integrated with existing systems. Data logged by the proposed system can be remotely accessed, plotted and analysed. Thus the simultaneous and remote monitoring of a large scale network of ponds can be easily implemented. This provides a fully automated solution to the monitoring and control of green energy production operations, which can be used to provide heat and electricity to buildings. Remote real time monitoring will facilitate the setup and operations of several solar ponds around cities.


Author(s):  
Alexander Zhukov ◽  
Ilya Korotkov ◽  
Evgeny Sidenko ◽  
Igor Nekrasov ◽  
Pavel Gridin ◽  
...  

2021 ◽  
Vol 25 (4 Part B) ◽  
pp. 3073-3081
Author(s):  
Fen Peng

To solve the inaccurate measurement of the traditional thermal energy network, the paper designs a thermal energy network monitoring and control system based on GPS and Ti3367 wireless transmission and reception based on the IoT. First, the paper designs the monitoring and control system?s overall function and topology, including the management layer?s complex functions, the data aggregation layer, and the data acquisition layer. The paper then designs the system?s hardware structure based on the IoT, including the connection design of the hardware circuit structure diagram of the data aggregation layer and the data acquisition layer. Finally, the paper realizes the system?s software flow design, including system initialization and wireless data receiving and sending flow design.


2013 ◽  
Vol 56 (3) ◽  
Author(s):  
Zhang Qi-sheng ◽  
Deng Ming ◽  
Guo Jian ◽  
Luo Wei-bing ◽  
Wang Qi ◽  
...  

<p>There has been considerable development of seismic detectors over the last 80 years. However, there is still a need to further develop new earthquake exploration and data acquisition systems with high precision. In particular, for China to keep up with the latest technology of these systems, it is important to be involved in the research and development, instead of importing systems that soon fall behind the latest technology. In this study, the features of system-on-a-programmable-chip (SoPC) technology are analyzed and used to design a new digital seismic-data acquisition station. The hardware circuit of the station was developed, and the analog board and the main control data-transmission board were designed according to the needs of digital seismic-data acquisition stations. High-definition analog-to-digital converter sequential digital filter technology of the station (cascade integrator comb filter, finite impulse response digital filter) were incorporated to provide advantages to the acquisition station, such as high definition, large dynamic scope, and low noise. A specific data-transmission protocol was designed for the station, which ensured a transmission speed of 16 Mbps along a 55-m wire with low power consumption. Synchronic acquisition was researched and developed, so as to achieve accuracy better than 200 ns. The key technologies were integrated into the SoPC of the main control data-transmission board, so as to ensure high-resolution acquisition of the station, while improving the accuracy of the synchronic acquisition and data-transmission speed, lowering the power consumption, and preparing for the follow-up efforts to tape out.</p>


2020 ◽  
Vol 64 (1) ◽  
pp. 651-664
Author(s):  
Cheng Caifeng ◽  
Sun Xiang’e ◽  
Lin Deshu ◽  
Tu Yiliu

Sign in / Sign up

Export Citation Format

Share Document