Vertical seismic profile Kirchhoff migration with structure dip constraint
Prestack Kirchhoff depth migration is commonly used in borehole seismic imaging, where there is uneven illumination due to the limitations of the source-receiver geometry. A new vertical seismic profile (VSP) migration/imaging workflow has been established that incorporates the structure-dip information derived from a newly developed structure tensor analysis into the existing VSP Kirchhoff migration/imaging technique. This allows us to better image the structures in the vicinity of a borehole and the far-field dipping events away from the borehole. We tested the workflow with the HESS salt model. The results were compared with those from reverse time migration, which found that Kirchhoff migration combined with structure-dip information not only reduced ambiguities of the imaging result but also allowed for imaging dip structures (e.g., fault) in the far region from the borehole. This allows for imaging dip structures and provides a useful extension of existing VSP imaging capabilities using Kirchhoff migration.