Vertical seismic profile Kirchhoff migration with structure dip constraint

2015 ◽  
Vol 3 (3) ◽  
pp. SW51-SW56
Author(s):  
Xiaomin Zhao ◽  
Shengwen Jin

Prestack Kirchhoff depth migration is commonly used in borehole seismic imaging, where there is uneven illumination due to the limitations of the source-receiver geometry. A new vertical seismic profile (VSP) migration/imaging workflow has been established that incorporates the structure-dip information derived from a newly developed structure tensor analysis into the existing VSP Kirchhoff migration/imaging technique. This allows us to better image the structures in the vicinity of a borehole and the far-field dipping events away from the borehole. We tested the workflow with the HESS salt model. The results were compared with those from reverse time migration, which found that Kirchhoff migration combined with structure-dip information not only reduced ambiguities of the imaging result but also allowed for imaging dip structures (e.g., fault) in the far region from the borehole. This allows for imaging dip structures and provides a useful extension of existing VSP imaging capabilities using Kirchhoff migration.

2021 ◽  
Author(s):  
Herurisa Rusmanugroho ◽  
Makky Sandra Jaya ◽  
M Hafizal Zahir ◽  
M Faizal Rahim

Abstract The performance of pre-stack depth migration (PSDM) on the fiber optic, distributed acoustic sensing (DAS), vertical seismic profile (VSP) data has rarely been reported. We show the results of PSDM for the fiber optic cables, newly developed and tested at a field in Canada. We apply Kirchhoff migration, Fresnel volume migration and reverse time migration (RTM) to the walkway VSP data to obtain high resolution images of the shallow to deeper structures and provide the performance analysis of the migration methods for the DAS VSP data.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3244
Author(s):  
Peng Guan ◽  
Cuifa Shao ◽  
Yuyong Jiao ◽  
Guohua Zhang ◽  
Bin Li ◽  
...  

Migration imaging is a key step in tunnel seismic data processing. Due to the limitation of tunnel space, tunnel seismic data are small-quantity, multi-component, and have a small offset. Kirchhoff migration based on the ray theory is limited to the migration aperture and has low migration imaging accuracy. Kirchhoff migration can no longer meet the requirements of high-precision migration imaging. The reverse time migration (RTM) method is used to realize cross-correlation imaging by reverse-time recursion principle of the wave equation. The 3-D RTM method cannot only overcome the effect of small offset, but also realize multi-component data imaging, which is the most accurate migration method for tunnel seismic data. In this paper, we will study the 3-D RTM method for multi-component tunnel seismic data. Combined with the modeled data and the measured data, the imaging accuracy of the 3-D Kirchhoff migration and 3-D RTM is analyzed in detail. By comparing single-component and multi-component Kirchhoff migration and RTM profile, the advantages of the multi-component RTM method are summarized. Compared with the Kirchhoff migration method, the 3-D RTM method has the following advantages: (1) it can overcome the effect of small offset and expand the range of migration imaging; (2) multi-component data can be realized to improve the energy of anomalous interface; (3) it can make full use of multiple waves to realize migration imaging and improve the resolution of the anomalous interface. The modeled data and the measured data prove the advantages of the 3-D multi-component RTM method.


Geophysics ◽  
1988 ◽  
Vol 53 (8) ◽  
pp. 1109-1112 ◽  
Author(s):  
George A. McMechan ◽  
Liang‐Zie Hu ◽  
Douglas Stauber

Prestack reverse‐time migration for acoustic waves has recently been developed for vertical seismic profile (VSP) data (Chang and McMechan, 1986) and for cross‐hole (CH) data (Hu et al., 1988). Both sets of authors use the same migration software and produce images from the scattered (reflected and diffracted) energy in the recorded wave fields.


Geophysics ◽  
2019 ◽  
Vol 84 (6) ◽  
pp. S511-S522 ◽  
Author(s):  
Kai Gao ◽  
Lianjie Huang

Vector elastic reverse time migration (ERTM) produces subsurface elastic images with correct polarities using multicomponent seismic data. However, the decomposition of elastic wavefields into vector P- and S-wavefields is computationally expensive, particularly in heterogeneous and complex anisotropic media. We have developed a computationally efficient vector ERTM method in the hybrid time and frequency domain by combining three existing techniques. Rather than decomposing elastic wavefields into vector qP- and qS-wavefields during time-domain wavefield propagation, we conduct the wavefield decomposition in the frequency domain for several selected frequencies. In general, the number of selected frequencies needed for migration imaging is much smaller than the number of time steps during forward and backward wavefield propagation, leading to greatly reduced computational costs associated with the qP-/qS-wavefield vector separation in complex heterogeneous anisotropic media. We further combine an implicit directional wavefield separation into the vector ERTM to enhance the image quality. The numerical results demonstrate that our method produces high-quality elastic-wave migration images with notably reduced computational costs compared to the conventional vector ERTM method.


Geophysics ◽  
2010 ◽  
Vol 75 (2) ◽  
pp. S81-S93 ◽  
Author(s):  
Mikhail M. Popov ◽  
Nikolay M. Semtchenok ◽  
Peter M. Popov ◽  
Arie R. Verdel

Seismic depth migration aims to produce an image of seismic reflection interfaces. Ray methods are suitable for subsurface target-oriented imaging and are less costly compared to two-way wave-equation-based migration, but break down in cases when a complex velocity structure gives rise to the appearance of caustics. Ray methods also have difficulties in correctly handling the different branches of the wavefront that result from wave propagation through a caustic. On the other hand, migration methods based on the two-way wave equation, referred to as reverse-time migration, are known to be capable of dealing with these problems. However, they are very expensive, especially in the 3D case. It can be prohibitive if many iterations are needed, such as for velocity-model building. Our method relies on the calculation of the Green functions for the classical wave equation by per-forming a summation of Gaussian beams for the direct and back-propagated wavefields. The subsurface image is obtained by cal-culating the coherence between the direct and backpropagated wavefields. To a large extent, our method combines the advantages of the high computational speed of ray-based migration with the high accuracy of reverse-time wave-equation migration because it can overcome problems with caustics, handle all arrivals, yield good images of steep flanks, and is readily extendible to target-oriented implementation. We have demonstrated the quality of our method with several state-of-the-art benchmark subsurface models, which have velocity variations up to a high degree of complexity. Our algorithm is especially suited for efficient imaging of selected subsurface subdomains, which is a large advantage particularly for 3D imaging and velocity-model refinement applications such as subsalt velocity-model improvement. Because our method is also capable of providing highly accurate migration results in structurally complex subsurface settings, we have also included the concept of true-amplitude imaging in our migration technique.


Sign in / Sign up

Export Citation Format

Share Document