Application of bi-Gaussian S-transform in high-resolution seismic time-frequency analysis

2017 ◽  
Vol 5 (1) ◽  
pp. SC1-SC7 ◽  
Author(s):  
Zixiang Cheng ◽  
Wei Chen ◽  
Yangkang Chen ◽  
Ying Liu ◽  
Wei Liu ◽  
...  

The S-transform is one of the most widely used methods of time-frequency analysis. It combines the respective advantages of the short-time Fourier transform and wavelet transforms with scale-dependent resolution using Gaussian windows, scaled inversely with frequency. One of the problems with the traditional symmetric Gaussian window is the degradation of time resolution in the time-frequency spectrum due to the long front taper. We have studied the performance of an improved S-transform with an asymmetric bi-Gaussian window. The asymmetric bi-Gaussian window can obtain an increased time resolution in the front direction. The increased time resolution can make event picking high resolution, which will facilitate an improved time-frequency characterization for oil and gas trap prediction. We have applied the slightly modified bi-Gaussian S-transform to a synthetic trace, a 2D seismic section, and a 3D seismic cube to indicate the superior performance of the bi-Gaussian S-transform in analyzing nonstationary signal components, hydrocarbon reservoir predictions, and paleochannels delineations with an obviously higher resolution.

Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4457 ◽  
Author(s):  
She ◽  
Zhu ◽  
Tian ◽  
Wang ◽  
Yokoi ◽  
...  

Feature extraction, as an important method for extracting useful information from surfaceelectromyography (SEMG), can significantly improve pattern recognition accuracy. Time andfrequency analysis methods have been widely used for feature extraction, but these methods analyzeSEMG signals only from the time or frequency domain. Recent studies have shown that featureextraction based on time-frequency analysis methods can extract more useful information fromSEMG signals. This paper proposes a novel time-frequency analysis method based on the Stockwelltransform (S-transform) to improve hand movement recognition accuracy from forearm SEMGsignals. First, the time-frequency analysis method, S-transform, is used for extracting a feature vectorfrom forearm SEMG signals. Second, to reduce the amount of calculations and improve the runningspeed of the classifier, principal component analysis (PCA) is used for dimensionality reduction of thefeature vector. Finally, an artificial neural network (ANN)-based multilayer perceptron (MLP) is usedfor recognizing hand movements. Experimental results show that the proposed feature extractionbased on the S-transform analysis method can improve the class separability and hand movementrecognition accuracy compared with wavelet transform and power spectral density methods.


2006 ◽  
Vol 117 (10) ◽  
pp. 2128-2143 ◽  
Author(s):  
Kevin A. Jones ◽  
Bernice Porjesz ◽  
David Chorlian ◽  
Madhavi Rangaswamy ◽  
Chella Kamarajan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document