Depth-conversion techniques and challenges in complex sub-Andean provinces

2018 ◽  
Vol 6 (1) ◽  
pp. T209-T229 ◽  
Author(s):  
Antonio J. Velásquez ◽  
Héctor Alfonso

The reliability of depth conversion in complex land areas is particularly challenging. Accuracy and precision are usually difficult to achieve simultaneously because of the limited amount and quality of seismic data and sparse control from well data. Ideally, depth-migration methods would be the right tools to produce such data for interpreters. However, despite recent significant breakthroughs in seismic imaging, the ability to provide precise depths is not always achievable with depth-imaging techniques. Therefore, depth conversion remains a crucial tool for converting a seismic image and its interpretation to geologic depth. We have developed an overview of the techniques used for depth conversion through a carefully selected set of geologically diverse field examples. We determine the challenges faced while applying each methodology and, more importantly, share our own experiences and pitfalls. We also evaluate the steps taken to overcome these limitations. All these studies highlight the pragmatic application of techniques and their common pitfalls to improve the workflows that can be implemented to solve other depth-conversion problems. Depth-conversion techniques can be classified depending on the approach used for velocity model building (VMB) (i.e., time-depth and instantaneous velocity functions, layer-cake models, or geostatistical velocity interpolations) and also depending on the ray-tracing procedure (i.e., vertical stretching or image ray). To verify the reliability of the VMB, we establish the following criteria for an acceptable velocity model: (1) honors hard data, (2) integrates all the available sources of velocity information, and (3) makes geologic sense. We reinforce the latter in complex areas where geologic control drives the chosen approach. For instance, in cases with strong velocity gradients (e.g., basement-involved structures), vertical depth conversion may not be able to solve all possible scenarios, resulting in an incomplete assessment of the structural uncertainty. To model such situations, we use a time-to-depth conversion based on the image-ray concept.

1996 ◽  
Vol 15 (6) ◽  
pp. 751-753 ◽  
Author(s):  
Y. C. Kim ◽  
C. M. Samuelsen ◽  
T. A. Hauge

2021 ◽  
Author(s):  
Farah Syazana Dzulkefli ◽  
Kefeng Xin ◽  
Ahmad Riza Ghazali ◽  
Guo Qiang ◽  
Tariq Alkhalifah

Abstract Salt is known for having a generally low density and higher velocity compared with the surrounding rock layers which causes the energy to scatter once the seismic wavefield hits the salt body and relatively less energy is transmitted through the salt to the deeper subsurface. As a result, most of imaging approaches are unable to image the base of the salt and the reservoir below the salt. Even the velocity model building such as FWI often fails to illuminate the deeper parts of salt area. In this paper, we show that Full Wavefield Redatuming (FWR) is used to retrieved and enhance the seismic data below the salt area, leading to a better seismic image quality and allowing us to focus on updating the velocity in target area below the salt. However, this redatuming approach requires a good overburden velocity model to retrieved good redatumed data. Thus, by using synthetic SEAM model, our objective is to study on the accuracy of the overburden velocity model required for imaging beneath complex overburden. The results show that the kinematic components of wave propagation are preserved through redatuming even with heavily smoothed overburden velocity model.


Author(s):  
G. F. Mills ◽  
M. Brzostowski ◽  
S. Ridgway ◽  
C. Barton

1992 ◽  
Author(s):  
Geoffrey F. Mills ◽  
Matthew Brzostowski ◽  
Stephen Ridgway ◽  
Wen Fong Chang ◽  
Chuck Barton

2014 ◽  
Vol 2 (2) ◽  
pp. T79-T88 ◽  
Author(s):  
Adam D. Halpert ◽  
Robert G. Clapp ◽  
Biondo Biondi

Although it is a crucial component of seismic velocity model building, salt delineation is often a major bottleneck in the interpretation workflow. Automatic methods like image segmentation can help to alleviate this bottleneck, but issues with accuracy and efficiency can hinder their effectiveness. However, a new graph-based segmentation algorithm can, after modifications to account for the unique nature of seismic data, quickly and accurately delineate salt bodies on 3D seismic images. In areas where salt boundaries are poorly imaged, limited manual interpretations can be used to guide the automatic segmentation, allowing for interpreter insight to be combined with modern computational capabilities. A successful 3D field data example demonstrates that this method could become an important tool for interactive interpretation tasks.


Sign in / Sign up

Export Citation Format

Share Document