IMPROVED SPECTRAL CLUSTERING APPROACH – A NEW TOOL FOR UNSUPERVISED SEISMIC FACIES ANALYSIS OF VARIABLE WINDOW LENGTH

2021 ◽  
pp. 1-48
Author(s):  
Zhong Hong ◽  
Kunhong Li ◽  
Mingjun Su ◽  
Guangmin Hu

Traditional constant time window-based waveform classification method is a robust tool for seismic facies analysis. However, when the interval thickness is seismically variable, the fixed time window is not able to contain the complete geologic information of interest. Therefore, the constant time window-based waveform classification method is inapplicable to conduct seismic facies analysis. To expand the application scope of seismic waveform classification in the strata with varying thickness, we propose a novel scheme for unsupervised seismic facies analysis of variable window length. The input of top and bottom horizons can guarantee the comprehensive geologic information of target interval. Throughout the whole workflow, we utilize DTW (Dynamic Time Warping) distance to measure the similarities between seismic waveforms of different lengths. Firstly, we improve the traditional spectral clustering algorithm by replacing the Euclidean distance with DTW-distance. Therefore, it can be applicable in the interval of variable thickness. Secondly, to solve the problem of large computation when applying the improved spectral clustering approach, we propose the method of seismic data thinning based on the technology of superpixel. Lastly, we combine these two algorithms and perform the integrated workflow of improved spectral clustering. The experiments on synthetic data show that the proposed workflow outperforms the traditional fixed time window-based clustering algorithm in recognizing the boundaries of different lithologies and lithologic associations with varying thickness. The practical application shows great promise for reservoir characterization of interval with varying thickness. The plane map of waveform classification provides convincing reference to delineate reservoir distribution of data set.

2021 ◽  
Vol 18 (5) ◽  
pp. 618-626
Author(s):  
Chengyun Song ◽  
Lin Li ◽  
Lingxuan Li ◽  
Kunhong Li

Abstract Seismic facies analysis can generate a map to describe the spatial distribution characteristics of reservoirs, and therefore plays a critical role in seismic interpretation. To analyse the characteristics of the horizon of interest, it is usually necessary to extract seismic waveforms along the target horizon using a selected time window. The inaccuracy of horizon interpretation often produces some inconsistent phases and leads to inaccurate classification. Therefore, the developed adaptive phase K-means algorithm proposed a sliding time window to extract seismic waveforms. However, setting the maximum offset of the sliding window is difficult in a real data application. A value that is too large may cause the cross-layer problem, whereas a value that is too small reduces the flexibility of the algorithm. To address this disadvantage, this paper proposes a robust K-means (R-K-means) algorithm with a Gaussian-weighted sliding window for seismic waveform classification. The used weights punish those windows distant from the interpretation horizon in the objective function, consequently producing a smaller range of horizon adjustments even when using relatively large maximum offsets and benefitting the generation of stable and reliable seismic facies maps. The application of real seismic data from the F3 block proves the effectiveness of the proposed algorithm.


First Break ◽  
2021 ◽  
Vol 39 (9) ◽  
pp. 48-52
Author(s):  
Alexander Inozemtsev ◽  
Zvi Koren ◽  
Alexander Galkin ◽  
Igor Stepanov

2016 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Taufan Wiguna ◽  
Rahadian Rahadian ◽  
Sri Ardhyastuti ◽  
Safira Rahmah ◽  
Tati Zera

<p class="abstrak">Two dimension (2D) seismic profile of Baruna and Jaya lines at North-East Java Basin show seismic reflector characteristics that can be used to interpret sediment thickness and continuity. Those reflector characteristics that can be applied for seismic facies analysis that represent depositional environment. This study starts from seismic data processing that using Kirchhoff Post Stack Time Migration method which is 2D seismic profile as result. Seismic reflector characterization has been done to both 2D profiles. Seismic reflector characterization was grouped as (i) individual reflection, (ii) reflection  configuration, (iii) reflection termination, (iv) external form. Individual reflection characteristics show high and medium amplitude, medium and low frequency, and continuous. Configuration reflection is continuous with parallel and subparallel type. Reflection termination shows onlap, and external form shows sheet drape. Local mound appearance can be interpreted as paleo-reef. Facies seismic anlysis result for this study area is shelf.</p>


Sign in / Sign up

Export Citation Format

Share Document