scholarly journals Origin of shallow gas in the Dutch North Sea - Seismic versus geochemical evidence

2021 ◽  
pp. 1-67
Author(s):  
Geert de Bruin ◽  
Johan ten Veen ◽  
Martin Wilpshaar ◽  
Noortje Versteijlen ◽  
Kees Geel ◽  
...  

In the Dutch offshore, we have observed numerous acoustic anomalies, usually bright spots, in seismic data of Cenozoic deltaic deposits. When associated with shallow gas, these bright spots are good indicators of resource potential, drilling hazard, or seabed methane emissions. We apply a combined seismic and petrophysical assessment to qualify the bright spots as direct hydrocarbon indicators (DHIs) for shallow gas and to exclude alternative sources of seismic anomalies. In some cases, we use other DHIs such as flat spots, velocity push-downs, transmission, and attenuation effects as estimators for gas saturation. A long-standing discussion concerns the sourcing and migration of shallow gas. Although vertical seismic noise trails (chimneys) tend to be seen as proof that shallow gas originates from the migration of deeper sourced thermogenic gas, the geochemical and isotope analyses almost exclusively indicate that the gas is of microbial origin and generated in situ in the Cenozoic strata. We conclude that the observed “chimneys” are most likely transmission effects, that is, artifacts that do not represent migration pathways of gas. Hence, we believe that for the Dutch offshore, the presence of shallow biogenic gas is not indicative of leakage of deeper thermogenic petroleum plays and cannot be used as an exploration tool for these deeper targets.

2003 ◽  
Vol 82 (1) ◽  
pp. 91-105 ◽  
Author(s):  
B.M. Schroot ◽  
R.T.E Schüttenhelm

AbstractSurface and sub-surface expressions of shallow gas in the Netherlands part of the southern North Sea are described, using standard E&P 2D and 3D seismic surveys, as well as higher frequency acoustic surveys. Surface expressions observed are pockmarks, which are geomorphologic features at the seabed indicative for venting of gas, and cemented sandstones. The subsurface expressions found comprise both phenomena indicating efficient trapping of gas in reservoir sands, such as shallow bright spots and flat spots, and phenomena, which are indications of migration or leakage to the seabed. We refer to the latter as ‘seismic anomalies indicating leakage’. These anomalies include gas chimneys or seismic chimneys. All chimneys found in the area have in common, that they belong to a seepage style, which is called ‘small and localised’. Much of this seepage is situated over salt domes, with the accompanying normal fault above the domes acting as pathways for the gas or fluids. Although there is admixture of biogenic gas, it is believed that many of the features observed relate to thermo-genic gas.


2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 54-56
Author(s):  
D R Lim ◽  
M Tsai ◽  
S E Gruchy ◽  
J Jones ◽  
G Williams ◽  
...  

Abstract Background The COVID-2019 pandemic continues to restrict access to endoscopy, resulting in delays or cancellation of non-urgent endoscopic procedures. A delay in the removal or exchange of plastic biliary stents may lead to stent occlusion with consensus recommendation of stent removal or exchange at three-month intervals [1–4]. We postulated that delayed plastic biliary stent removal (DPBSR) would increase complication rates. Aims We aim to report our single-centre experience with complications arising from DPBSR. Methods This was a retrospective, single-center, observational cohort study. All subjects who had ERCP-guided plastic biliary stent placement in Halifax, Nova Scotia between Dec 2019 and June 2020 were included in the study. DPBSR was defined as stent removal >=90 days from insertion. Four endpoints were assigned to patients: 1. Stent removed endoscopically, 2. Died with stent in-situ (measured from stent placement to documented date of death/last clinical encounter before death), 3. Pending removal (subjects clinically well, no liver enzyme elevation, not expired, endpoint 1 Nov 2020), and 4. Complication requiring urgent reintervention. Kaplan-Meier survival analysis was used to represent duration of stent patency (Fig.1). Results 102 (47.2%) had plastic biliary stents placed between 2/12/2019 and 29/6/2020. 49 (48%) were female, and the median age was 68 (R 16–91). Median follow-up was 167.5 days, 60 (58.8%) subjects had stent removal, 12 (11.8%) died before replacement, 21 (20.6%) were awaiting stent removal with no complications (median 230d, R 30–332), 9 (8.8%) had complications requiring urgent ERCP. Based on death reports, no deaths were related to stent-related complications. 72(70.6%) of patients had stents in-situ for >= 90 days. In this population, median time to removal was 211.5d (R 91-441d). 3 (4.2%) subjects had stent-related complications requiring urgent ERCP, mean time to complication was 218.3d (R 94–441). Stent removal >=90 days was not associated with complications such as occlusion, cholangitis, and migration (p=1.0). Days of stent in-situ was not associated with occlusion, cholangitis, and migration (p=0.57). Sex (p=0.275), cholecystectomy (p=1.0), cholangiocarcinoma (p=1.0), cholangitis (p=0.68) or pancreatitis (p=1.0) six weeks prior to ERCP, benign vs. malignant etiology (p=1.0) were not significantly associated with stent-related complications. Conclusions Plastic biliary stent longevity may have been previously underestimated. The findings of this study agree with CAG framework recommendations [5] that stent removal be prioritized as elective (P3). Limitations include small sample size that could affect Kaplan-Meier survival analysis. Despite prolonged indwelling stent time as a result of COVID-19, we did not observe an increased incidence of stent occlusion or other complications. Funding Agencies None


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 773
Author(s):  
Ilona Szumańska ◽  
Sandra Lubińska-Mielińska ◽  
Dariusz Kamiński ◽  
Lucjan Rutkowski ◽  
Andrzej Nienartowicz ◽  
...  

Invasive alien species (IAS) is a global problem that largely relates to human activities and human settlements. To prevent the further spread of IAS, we first need to know their pattern of distribution, to determine which constitutes the greatest threat, and understand which habitats and migration pathways they prefer. Our research aimed to identify the main vectors and distribution pattern of IAS of plants in the city environment. We checked the relations between species distribution and such environmental factors as urban soil type and habitat type. We applied data on IAS occurrence (collected in the period 1973–2015) in 515 permanent plots with dimensions of 0.5 × 0.5 km and analyzed by direct ordination methods. In total, we recorded 66 IAS. We found a 27% variance in the IAS distribution pattern, which can be explained by statistically significant soil and habitat types. The most important for species distribution were: river and alluvial soils, forests and related rusty soils, and places of intensive human activities, including areas of urbisols and industriosols. Our results provide details that can inform local efforts for the management and control of invasive species, and they provide evidence of the different associations between natural patterns and human land use.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1428
Author(s):  
Agnieszka Pluta-Kubica ◽  
Ewelina Jamróz ◽  
Gohar Khachatryan ◽  
Adam Florkiewicz ◽  
Pavel Kopel

There is a serious need to develop and test new biodegradable packaging which could at least partially replace petroleum-based materials. Therefore, the objective of this work was to examine the influence of the recently developed furcellaran nanocomposite film with silver nanoparticles (obtained by an in situ method) on the quality properties of two cheese varieties: a rennet-curd (gouda) and an acid-curd (quark) cheese. The water content, physicochemical properties, microbiological and organoleptic quality of cheese, and migration of silver nanoparticles were examined. Both the number of Lactococcus and total bacteria count did not differ during storage of gouda regardless of the packaging applied. The number of Lactococcus decreased in analogous quark samples. The use of the film slowed down and inhibited the growth of yeast in gouda and quark, respectively. An inhibitory effect of this film on mold count was also observed; however, only regarding gouda. The level of silver migration was found to be lower in quark than in gouda. The film improved the microbiological quality of cheeses during storage. Consequently, it is worth continuing research for the improvement of this film in order to enable its use in everyday life.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 667
Author(s):  
Yanxia Lu ◽  
Qing Peng ◽  
Chenguang Liu

The α-decay of incorporated actinides continuously produces helium, resulting in helium accumulation and causing security concerns for nuclear waste forms. The helium mobility is a key issue affecting the accumulation and kinetics of helium. The energy barriers and migration pathways of helium in a potential high-level nuclear waste forms, La2Zr2O7 pyrochlore, have been investigated in this work using the climbing image nudged elastic band method with density functional theory. The minimum energy pathway for helium to migrate in La2Zr2O7 is identified as via La–La interstitial sites with a barrier of 0.46 eV. This work may offer a theoretical foundation for further prospective studies of nuclear waste forms.


Sign in / Sign up

Export Citation Format

Share Document