Rock Physics modeling; attribute application and seismic inversion study in Miano, Lower Indus Basin of Pakistan

2015 ◽  
Author(s):  
Shazia Asim* ◽  
Peimin Zhu ◽  
Tayyab Naseer ◽  
Shabeer Ahmed ◽  
Farrukh Hussain ◽  
...  
Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C177-C191 ◽  
Author(s):  
Yunyue Li ◽  
Biondo Biondi ◽  
Robert Clapp ◽  
Dave Nichols

Seismic anisotropy plays an important role in structural imaging and lithologic interpretation. However, anisotropic model building is a challenging underdetermined inverse problem. It is well-understood that single component pressure wave seismic data recorded on the upper surface are insufficient to resolve a unique solution for velocity and anisotropy parameters. To overcome the limitations of seismic data, we have developed an integrated model building scheme based on Bayesian inference to consider seismic data, geologic information, and rock-physics knowledge simultaneously. We have performed the prestack seismic inversion using wave-equation migration velocity analysis (WEMVA) for vertical transverse isotropic (VTI) models. This image-space method enabled automatic geologic interpretation. We have integrated the geologic information as spatial model correlations, applied on each parameter individually. We integrate the rock-physics information as lithologic model correlations, bringing additional information, so that the parameters weakly constrained by seismic are updated as well as the strongly constrained parameters. The constraints provided by the additional information help the inversion converge faster, mitigate the ambiguities among the parameters, and yield VTI models that were consistent with the underlying geologic and lithologic assumptions. We have developed the theoretical framework for the proposed integrated WEMVA for VTI models and determined the added information contained in the regularization terms, especially the rock-physics constraints.


2020 ◽  
Vol 70 (1) ◽  
pp. 209-220
Author(s):  
Qazi Sohail Imran ◽  
◽  
Numair Ahmad Siddiqui ◽  
Abdul Halim Abdul Latif ◽  
Yasir Bashir ◽  
...  

Offshore petroleum systems are often very complex and subtle because of a variety of depositional environments. Characterizing a reservoir based on conventional seismic and well-log stratigraphic analysis in intricate settings often leads to uncertainties. Drilling risks, as well as associated subsurface uncertainties can be minimized by accurate reservoir delineation. Moreover, a forecast can also be made about production and performance of a reservoir. This study is aimed to design a workflow in reservoir characterization by integrating seismic inversion, petrophysics and rock physics tools. Firstly, to define litho facies, rock physics modeling was carried out through well log analysis separately for each facies. Next, the available subsurface information is incorporated in a Bayesian engine which outputs several simulations of elastic reservoir properties, as well as their probabilities that were used for post-inversion analysis. Vast areal coverage of seismic and sparse vertical well log data was integrated by geostatistical inversion to produce acoustic impedance realizations of high-resolution. Porosity models were built later using the 3D impedance model. Lastly, reservoir bodies were identified and cross plot analysis discriminated the lithology and fluid within the bodies successfully.


2020 ◽  
Vol 8 (2) ◽  
pp. T275-T291 ◽  
Author(s):  
Kenneth Bredesen ◽  
Esben Dalgaard ◽  
Anders Mathiesen ◽  
Rasmus Rasmussen ◽  
Niels Balling

We have seismically characterized a Triassic-Jurassic deep geothermal sandstone reservoir north of Copenhagen, onshore Denmark. A suite of regional geophysical measurements, including prestack seismic data and well logs, was integrated with geologic information to obtain facies and reservoir property predictions in a Bayesian framework. The applied workflow combined a facies-dependent calibrated rock-physics model with a simultaneous amplitude-variation-with-offset seismic inversion. The results suggest that certain sandstone distributions are potential aquifers within the target interval, which appear reasonable based on the geologic properties. However, prediction accuracy suffers from a restricted data foundation and should, therefore, only be considered as an indicator of potential aquifers. Despite these issues, the results demonstrate new possibilities for future seismic reservoir characterization and rock-physics modeling for exploration purposes, derisking, and the exploitation of geothermal energy as a green and sustainable energy resource.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C205-C218 ◽  
Author(s):  
Yunyue Li ◽  
Biondo Biondi ◽  
Robert Clapp ◽  
Dave Nichols

Velocity model building is the first step of seismic inversion and the foundation of the subsequent processing and interpretation workflow. Velocity model building from surface seismic data only becomes severely underdetermined and nonunique when more than one parameter is needed to characterize the velocity anisotropy. The traditional seismic processing workflow sequentially performs seismic velocity model building, structural imaging/interpretation, and lithologic inversion, modifying the subsurface model in each step without verifications against the previously used data. We have developed an integrated model building scheme that uses all available information: seismic data, geologic structural information, well logs, and rock-physics knowledge. We have evaluated the accuracy of the anisotropic model in the image space, in which structural information is estimated. The lithologic inversion results from well logs and the dynamic seismic information (amplitude versus angle) are also fed back to the kinematic seismic inversion via a cross-parameter covariance matrix, which is a multivariate Gaussian approximation to the numerical distribution modeled from stochastic rock-physics modeling. The procedure of building the rock-physics prior information and the improvements using these extra constraints were tested on a Gulf of Mexico data set. The inverted vertical transverse isotropic model not only better focused the seismic image, but it also satisfied the geologic and rock-physics principles.


2021 ◽  
Author(s):  
Zahid U. Khan ◽  
◽  
Mona Lisa ◽  
Muyyassar Hussain ◽  
Syed A. Ahmed ◽  
...  

The Pab Formation of Zamzama block, lying in the Lower Indus Basin of Pakistan, is a prominent gas-producing sand reservoir. The optimized production is limited by water encroachment in producing wells, thus it is required to distinguish the gas-sand facies from the remainder of the wet sands and shales for additional drilling zones. An approach is adopted based on a relation between petrophysical and elastic properties to characterize the prospect locations. Petro-elastic models for the identified facies are generated to discriminate lithologies in their elastic ranges. Several elastic properties, including p-impedance (11,600-12,100 m/s*g/cc), s-impedance (7,000-7,330 m/s*g/cc), and Vp/Vs ratio (1.57-1.62), are calculated from the simultaneous prestack seismic inversion, allowing the identification of gas sands in the field. Furthermore, inverted elastic attributes and well-based lithologies are incorporated into the Bayesian framework to evaluate the probability of gas sands. To better determine reservoir quality, bulk volumes of PHIE and clay are estimated using elastic volumes trained on well logs employing Probabilistic Neural Networking (PNN), which effectively handles heterogeneity effects. The results showed that the channelized gas-sands passing through existing well locations exhibited reduced clay content and maximum effective porosities of 9%, confirming the reservoir's good quality. Such approaches can be widely implemented in producing fields to completely assess litho-facies and achieve maximum production with minimal risk.


Sign in / Sign up

Export Citation Format

Share Document