Along-strike structure segmentation and cross-strike transfer faults in the Middle Devonian Marcellus Shale, Pennsylvania, Central Appalachian Basin: Implications for gas recovery efficiency and risk assessment using 3D seismic attribute analysis

2013 ◽  
Author(s):  
Emily D. Roberts ◽  
Dengliang Gao
2021 ◽  
pp. 1-17
Author(s):  
Karen M. Leopoldino Oliveira ◽  
Heather Bedle ◽  
Karelia La Marca Molina

We analyzed a 1991 3D seismic data located offshore Florida and applied seismic attribute analysis to identify geological structures. Initially, the seismic data appears to have a high signal-to-noise-ratio, being of an older vintage of quality, and appears to reveal variable amplitude subparallel horizons. Additional geophysical analysis, including seismic attribute analysis, reveals that the data has excessive denoising, and that the continuous features are actually a network of polygonal faults. The polygonal faults were identified in two tiers using variance, curvature, dip magnitude, and dip azimuth seismic attributes. Inline and crossline sections show continuous reflectors with a noisy appearance, where the polygonal faults are suppressed. In the variance time slices, the polygonal fault system forms a complex network that is not clearly imaged in the seismic amplitude data. The patterns of polygonal fault systems in this legacy dataset are compared to more recently acquired 3D seismic data from Australia and New Zealand. It is relevant to emphasize the importance of seismic attribute analysis to improve accuracy of interpretations, and also to not dismiss older seismic data that has low accurate imaging, as the variable amplitude subparallel horizons might have a geologic origin.


Sign in / Sign up

Export Citation Format

Share Document