shale reservoir
Recently Published Documents


TOTAL DOCUMENTS

375
(FIVE YEARS 151)

H-INDEX

21
(FIVE YEARS 8)

Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122191
Author(s):  
Zuhao Kou ◽  
Dongxu Zhang ◽  
Zhuoting Chen ◽  
Yaxi Xie
Keyword(s):  

2022 ◽  
Author(s):  
Liang Tao ◽  
Jianchun Guo ◽  
Zhongbo Wang ◽  
Yi Liu ◽  
Yuhang Zhao ◽  
...  

Abstract The optimization of shut-in-time in shale gas well is an important factor affecting the production of single well after volume fracturing. In this study, a new method for determining the optimal shut-in-time considering clay mineral content and ion diffusion concentration was proposed. First, a novel water spontaneous imbibition apparatus under the conditions of formation temperature and confining pressure was designed. Then, the water imbibition satuation of 15 shale samples from the Longmaxi Formation (LF) of the Sichuan Basin were measured to quantitatively evaluate the water imbibition ability and classify reservoir types. Finally, the salt ion concentration diffusion experiment was carried out to optimize the shut-in-time of different types of shale reservoirs. The experimental results shown that the clay mineral content was the key factor affecting water wettability of shale, the shale reservoirs can be divided into two types and the critical value of clay mineral content was about 40%. Based on the law of salt ion diffusion in shale, the initiation time of micro-fractures induced by shale hydration was about 10-15 days. Under the experimental conditions, the optimal shut-in time of type I shale reservoir and type II shale reservoir were about 20 days and 15 days respectively. The average daily gas production has increased from 15.6×104 m3/day to 25.1×104 m3/day. The study results can provide scientific basis for the optimization of flowback regime of shale gas resrvoirs.


2022 ◽  
Author(s):  
Qianli Lu ◽  
Zhuang Liu ◽  
Jianchun Guo ◽  
Shouyi Wang ◽  
Le He ◽  
...  

Abstract Casing deformation (CD) is a major challenge for shale gas development in Weiyuan gasfield, natural fracture (NF) slippage is one of the main causes of CD in Weiyuan gas filed. In order to study the mechanism and regularity of NF slippage induced CD, a wellbore shear stress calculation model and a CD degree prediction model are established. And results show that, the approach angle and ground principal stress difference have significant influence on wellbore shear stress, high wellbore shear stress occurs when wellbore orientation is perpendicular to the NF trend. Wellbore shear stress increases with the increase of fracture fluid pressure and NF area, improving casing strength or cementing quality has limited effect on reducing the risk of CD. The smaller the young's modulus, the higher the CD degree, Poisson's ratio has limited effect on CD degree. NF approach and fracture fluid pressure determines the value of CD degree. Field case shows that reasonable fracturing technology to control fracture net pressure and wellbore position arrangement are helpful for reducing CD risk, and the model proposed in this paper can be used to predict CD risk and calculate the CD degree.


2021 ◽  
Vol 44 (4) ◽  
pp. 397-407
Author(s):  
Wenlong Ding ◽  
Weite Zeng ◽  
Ruyue Wang ◽  
Kai Jiu ◽  
Zhe Wang ◽  
...  

In this paper, a finite element-based fracture prediction method for shale reservoirs was proposed using geostress field simulations, uniaxial and triaxial compression deformation tests, and acoustic emission geostress tests. Given the characteristics of tensile and shear fractures mainly developed in organic-rich shales, Griffith and Coulomb – Mohr criteria were used to calculate shale reservoirs' tensile and shear fracture rates. Furthermore, the total fracture rate of shale reservoirs was calculated based on the ratio of tension and shear fractures to the total number of fractures. This method has been effectively applied in predicting fracture distribution in the Lower Silurian Longmaxi Formation shale reservoir in southeastern Chongqing, China. This method provides a new way for shale gas sweet spot optimization. The simulation results have a significant reference value for the design of shale gas horizontal wells and fracturing reconstruction programs.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jiangfa Wu ◽  
Yunting Di ◽  
Jian Zhang ◽  
Peiyun Li ◽  
Deliang Zhang ◽  
...  

The horizontal well multistage hydraulic fracturing technology is the most effective way to exploit shale gas resources. Compared with conventional reservoir fracturing, the flowback rate of a fracturing fluid in a shale reservoir is extremely low, and a large amount of fracturing fluid remains in the formation. Therefore, the research on the mechanism of shale reservoir fracturing fluid flowback process will contribute to laying a theoretical foundation for improving the effect of the innovation for increasing output of shale gas wells. Based on the shale in the Sichuan Basin, this study first describes basic experiments on physical properties such as the porosity, permeability, mineral composition, wettability, and microstructure. The physical properties of shale reservoirs were also analyzed, which laid the foundation for subsequent modeling. Second, CMG software is used to establish a numerical model that fits the characteristics of the flowback process. The effect of reservoir properties, fracturing parameters, drainage–production system, chemical permeability on gas and water production in the flowback process and their mechanisms are also analyzed. According to most numerical simulation results, the lower cumulative gas production will be with the higher cumulative water production which means the higher flowback rate. The pursuit of only a high flowback rate is not advisable, and the development of the drainage–production system requires reasonable control of the fracturing fluid flowback rate. This study provides a theoretical basis for the optimization of shale gas drainage–production system after hydraulic fracturing.


Author(s):  
Yu-Liang Su ◽  
Ji-Long Xu ◽  
Wen-Dong Wang ◽  
Han Wang ◽  
Shi-Yuan Zhan

2021 ◽  
pp. 1-67
Author(s):  
Zhikai Liang ◽  
Zhenxue Jiang ◽  
Zhuo Li ◽  
Fenglin Gao ◽  
Chengxi Wang ◽  
...  

The stock of shale gas in the Shahezi shale reservoir in Changling fault depression, Songliao basin is believed to be worth exploring. To conduct an in-depth study on the pore structure and fractal characterization of organic matter (OM) can help better understand the pore system of shale reservoir, which has implications for the exploration of lacustrine shale. In order to demonstrate the nanoscale pore structure and irregularity of the isolated OM, we collected a large number of samples and then conducted a series of laboratory experiments, such as the XRD, SEM, CO2, and N2 adsorption experiments conducted to determine the pore structure parameters and reveal their heterogeneity according to FHH theory. As suggested by the experimental results, the pore volume of the isolated OM ranges between 0.034 and 0.056 cm3/g, which is approximately 0.90-3.06 times that of bulk shale samples. As for the fractal dimensions D1 (2.594 on average) and D2 (2.657 on average) of bulk shale, they are larger as compared to isolated OM, indicating that inorganic minerals can make a significant difference to the heterogeneity of shale pores. The fractal dimensions (D1 and D2) of bulk shales show a close correlation with the parameters of pore structure, while there is no significant correlation observed between the dimensions of isolated OM and its parameters. In addition, thermal maturity and solid bitumen have only limited impact on the OM pore structure of isolated OM samples. Then, we conducted a further research to reveal that the insoluble OM macerals derived from terrestrial higher plants can be used to explain the difference in pore structure and heterogeneity between isolated OM samples. Therefore, we arrived at the conclusion that the composition of macerals depends on the exact pore structure and fractal characteristics of isolated OM samples with similarity in thermal maturity


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Xiangjun Liu ◽  
Wei Lei ◽  
Jing Huang ◽  
Yi Ding ◽  
Lixi Liang ◽  
...  

Hydraulic fracturing is a necessary technique for shale gas exploitation. In order to have efficient stimulation treatment, a complex fracture network has to be developed, whereas with rich bedding planes and natural fractures, the mechanism of forming a fracture network is not fully understood and it is so tricky to predict propagation and initiation of hydraulic fracture. Therefore, in this paper, considering the strong anisotropy of shale reservoir, numerical simulation has been conducted to analyze fracture propagation and initiation on the basis of finite element and damage mechanics. Simulation results indicate that hydraulic fracture is not merely controlled by in situ stress due to strong anisotropy in shale. With plenty of bedding planes, hydraulic fracture tends to have initiation and propagation along the bedding plane. In particular, this influence becomes stronger with low strength and high development density of bedding planes. Additionally, in combination with natural fracture and bedding plane, the initiation point is usually on a natural fracture plane, causing relatively small breakdown pressure. In the process of fracture propagation, hydraulic fracture connects with natural fractures and bedding planes, forming dendritic bifurcation and more complicated paths. Numerical simulation proves that bedding plane and natural fracture are vital factors of hydraulic fracture. Compared to natural fracture, the bedding plane has a stronger impact on hydraulic fracture propagation. For the initiation of hydraulic fracture, natural fracture is the major effecting factor. The outcome of this study is able to offer theoretical guidance for hydraulic fracturing in shale.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Maosen Yan ◽  
Chi Ai ◽  
Xiaofei Fu ◽  
Jun Zhang ◽  
Xu Han ◽  
...  

Abstract Recently, CO2 geological sequestration combined with enhancing deep saline water/brine recovery is regarded as a potential strategic choice for reduction of CO2 emissions. This technology not only achieves the relatively secure storage of CO2 which was captured during industrial processes but also can enhance the recovery of water for drinking, industrial, and agricultural utilization. However, the impact of CO2-water-rock reactions on the shale reservoir in the system is unclear and the sealing performance of mudstone caprock has not been investigated. For analyzing the mechanism of mineral alteration in the shale reservoir, a three-dimensional injection-production model in the double-fractured horizontal well pattern is established according to actual parameters of shale and mudstone layers. In addition, mineral alteration was characterized and caprock sealing performance was also assessed. Numerical results showed that the presence of CO2 can lead to the dissolution of k-feldspar, oligoclase, chlorite, and dolomite and the precipitation of clay minerals such as kaolinite, illite, and smectite (Ca-smectite and Na-smectite). Due to positive ion released by dissolved primary minerals, the precipitation of secondary carbonate occurs including ankerite and dawsonite, which induces the mineral sequestration capacity of the shale reservoir. The amount of CO2 sequestration by mineral is 51430.96 t after 200 years, which equals 23.47% of the total injection (219145.34 t). Besides, the height of the sealing gas column is used for evaluating the sealing performance of the shale-mudstone interface. Results show that the height of the sealing gas column at the interface above the injection well is lower but the maximum value of CO2 gas saturation is only 0.00037 after 200 years. The height of the sealing gas column at the interface is greater than 800 m, which can be classified as level II and guarantee the security of the CO2 storage. The analysis results provide reliable guidance and reference for the site selection of CO2 geological sequestration.


2021 ◽  
Vol 7 ◽  
pp. 1121-1130
Author(s):  
Kangxing Dong ◽  
Qiaoer Li ◽  
Wei Liu ◽  
Xinrui Zhao ◽  
Shanren Zhang

Sign in / Sign up

Export Citation Format

Share Document