Dolomite reservoir detection using a high resolution AVO inversion method

Author(s):  
Bingyang Liu ◽  
Jianhu Gao ◽  
Shengjun Li
2018 ◽  
Author(s):  
Gan Zhang ◽  
Jingye Li ◽  
Lin Zhou ◽  
Xiaohong Chen ◽  
Chen Zhou ◽  
...  

2017 ◽  
Author(s):  
Cheng Guangsen ◽  
Xingyao Yin ◽  
Zhaoyun Zong

Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. R43-R55 ◽  
Author(s):  
Wubshet Alemie ◽  
Mauricio D. Sacchi

Three-term AVO inversion can be used to estimate P-wave velocity, S-wave velocity, and density perturbations from reflection seismic data. The density term, however, exhibits little sensitivity to amplitudes and, therefore, its inversion is unstable. One way to stabilize the density term is by including a scale matrix that provides correlation information between the three unknown AVO parameters. We investigate a Bayesian procedure to include sparsity and a scale matrix in the three-term AVO inversion problem. To this end, we model the prior distribution of the AVO parameters via a Trivariate Cauchy distribution. We found an iterative algorithm to solve the Bayesian inversion and, in addition, comparisons are provided with the classical inversion approach that uses a Multivariate Gaussian prior. It is important to point out that the Multivariate Gaussian prior allows us to include the correlation of the AVO parameters in the solution of the inverse problem. The Trivariate Cauchy prior not only permits us to incorporate correlation but also leads to high-resolution (broadband) P-wave velocity, S-wave velocity, and density perturbations.


2016 ◽  
Vol 4 (4) ◽  
pp. T613-T625 ◽  
Author(s):  
Qizhen Du ◽  
Bo Zhang ◽  
Xianjun Meng ◽  
Chengfeng Guo ◽  
Gang Chen ◽  
...  

Three-term amplitude-variation with offset (AVO) inversion generally suffers from instability when there is limited prior geologic or petrophysical constraints. Two-term AVO inversion shows higher instability compared with three-term AVO inversion. However, density, which is important in the fluid-type estimation, cannot be recovered from two-term AVO inversion. To reliably predict the P- and S-waves and density, we have developed a robust two-step joint PP- and PS-wave three-term AVO-inversion method. Our inversion workflow consists of two steps. The first step is to estimate the P- and S-wave reflectivities using Stewart’s joint two-term PP- and PS-AVO inversion. The second step is to treat the P-wave reflectivity obtained from the first step as the prior constraint to remove the P-wave velocity related-term from the three-term Aki-Richards PP-wave approximated reflection coefficient equation, and then the reduced PP-wave reflection coefficient equation is combined with the PS-wave reflection coefficient equation to estimate the S-wave and density reflectivities. We determined the effectiveness of our method by first applying it to synthetic models and then to field data. We also analyzed the condition number of the coefficient matrix to illustrate the stability of the proposed method. The estimated results using proposed method are superior to those obtained from three-term AVO inversion.


Sign in / Sign up

Export Citation Format

Share Document