Velocity model building using basin modeling and rock physics, with examples from Campeche deep-water Gulf of Mexico

Author(s):  
Jianchun Dai ◽  
Dawn Jantz ◽  
Zengbao Chen ◽  
Claire Jacob ◽  
Daniel Smith ◽  
...  
2003 ◽  
Author(s):  
Kamal Siddiqui ◽  
Steve Clark ◽  
Duryodhan Epili ◽  
Nicolas Chazalnoel ◽  
Lynn Anderson

2016 ◽  
Author(s):  
Nathaniel Cockrell ◽  
Khaled Abdelaziz ◽  
Kun Jiao ◽  
Adrian Montgomery ◽  
David Dangle ◽  
...  

2022 ◽  
Vol 41 (1) ◽  
pp. 9-18
Author(s):  
Andrew Brenders ◽  
Joe Dellinger ◽  
Imtiaz Ahmed ◽  
Esteban Díaz ◽  
Mariana Gherasim ◽  
...  

The promise of fully automatic full-waveform inversion (FWI) — a (seismic) data-driven velocity model building process — has proven elusive in complex geologic settings, with impactful examples using field data unavailable until recently. In 2015, success with FWI at the Atlantis Field in the U.S. Gulf of Mexico demonstrated that semiautomatic velocity model building is possible, but it also raised the question of what more might be possible if seismic data tailor-made for FWI were available (e.g., with increased source-receiver offsets and bespoke low-frequency seismic sources). Motivated by the initial value case for FWI in settings such as the Gulf of Mexico, beginning in 2007 and continuing into 2021 BP designed, built, and field tested Wolfspar, an ultralow-frequency seismic source designed to produce seismic data tailor-made for FWI. A 3D field trial of Wolfspar was conducted over the Mad Dog Field in the Gulf of Mexico in 2017–2018. Low-frequency source (LFS) data were shot on a sparse grid (280 m inline, 2 to 4 km crossline) and recorded into ocean-bottom nodes simultaneously with air gun sources shooting on a conventional dense grid (50 m inline, 50 m crossline). Using the LFS data with FWI to improve the velocity model for imaging produced only incremental uplift in the subsalt image of the reservoir, albeit with image improvements at depths greater than 25,000 ft (approximately 7620 m). To better understand this, reprocessing and further analyses were conducted. We found that (1) the LFS achieved its design signal-to-noise ratio (S/N) goals over its frequency range; (2) the wave-extrapolation and imaging operators built into FWI and migration are very effective at suppressing low-frequency noise, so that densely sampled air gun data with a low S/N can still produce useable model updates with low frequencies; and (3) data density becomes less important at wider offsets. These results may have significant implications for future acquisition designs with low-frequency seismic sources going forward.


Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE235-VE241 ◽  
Author(s):  
Juergen Fruehn ◽  
Ian F. Jones ◽  
Victoria Valler ◽  
Pranaya Sangvai ◽  
Ajoy Biswal ◽  
...  

Imaging in deep-water environments poses a specific set of challenges, both in data preconditioning and velocity model building. These challenges include scattered, complex 3D multiples, aliased noise, and low-velocity shallow anomalies associated with channel fills and gas hydrates. We describe an approach to tackling such problems for data from deep water off the east coast of India, concentrating our attention on iterative velocity model building, and more specifically the resolution of near-surface and other velocity anomalies. In the region under investigation, the velocity field is complicated by narrow buried canyons ([Formula: see text] wide) filled with low-velocity sediments, which give rise to severe pull-down effects; possible free-gas accumulation below an extensive gas-hydrate cap, causing dimming of the image below (perhaps as a result of absorption); and thin-channel bodies with low-velocity fill. Hybrid gridded tomography using a conjugate gradient solver (with [Formula: see text] vertical cell size) was applied to resolve small-scale velocity anomalies (with thicknesses of about [Formula: see text]). Manual picking of narrow-channel features was used to define bodies too small for the tomography to resolve. Prestack depth migration, using a velocity model built with a combination of these techniques, could resolve pull-down and other image distortion effects in the final image. The resulting velocity field shows high-resolution detail useful in identifying anomalous geobodies of potential exploration interest.


Sign in / Sign up

Export Citation Format

Share Document