The Wolfspar experience with low-frequency seismic source field data: Motivation, processing, and implications

2022 ◽  
Vol 41 (1) ◽  
pp. 9-18
Author(s):  
Andrew Brenders ◽  
Joe Dellinger ◽  
Imtiaz Ahmed ◽  
Esteban Díaz ◽  
Mariana Gherasim ◽  
...  

The promise of fully automatic full-waveform inversion (FWI) — a (seismic) data-driven velocity model building process — has proven elusive in complex geologic settings, with impactful examples using field data unavailable until recently. In 2015, success with FWI at the Atlantis Field in the U.S. Gulf of Mexico demonstrated that semiautomatic velocity model building is possible, but it also raised the question of what more might be possible if seismic data tailor-made for FWI were available (e.g., with increased source-receiver offsets and bespoke low-frequency seismic sources). Motivated by the initial value case for FWI in settings such as the Gulf of Mexico, beginning in 2007 and continuing into 2021 BP designed, built, and field tested Wolfspar, an ultralow-frequency seismic source designed to produce seismic data tailor-made for FWI. A 3D field trial of Wolfspar was conducted over the Mad Dog Field in the Gulf of Mexico in 2017–2018. Low-frequency source (LFS) data were shot on a sparse grid (280 m inline, 2 to 4 km crossline) and recorded into ocean-bottom nodes simultaneously with air gun sources shooting on a conventional dense grid (50 m inline, 50 m crossline). Using the LFS data with FWI to improve the velocity model for imaging produced only incremental uplift in the subsalt image of the reservoir, albeit with image improvements at depths greater than 25,000 ft (approximately 7620 m). To better understand this, reprocessing and further analyses were conducted. We found that (1) the LFS achieved its design signal-to-noise ratio (S/N) goals over its frequency range; (2) the wave-extrapolation and imaging operators built into FWI and migration are very effective at suppressing low-frequency noise, so that densely sampled air gun data with a low S/N can still produce useable model updates with low frequencies; and (3) data density becomes less important at wider offsets. These results may have significant implications for future acquisition designs with low-frequency seismic sources going forward.

2021 ◽  
Author(s):  
Farah Syazana Dzulkefli ◽  
Kefeng Xin ◽  
Ahmad Riza Ghazali ◽  
Guo Qiang ◽  
Tariq Alkhalifah

Abstract Salt is known for having a generally low density and higher velocity compared with the surrounding rock layers which causes the energy to scatter once the seismic wavefield hits the salt body and relatively less energy is transmitted through the salt to the deeper subsurface. As a result, most of imaging approaches are unable to image the base of the salt and the reservoir below the salt. Even the velocity model building such as FWI often fails to illuminate the deeper parts of salt area. In this paper, we show that Full Wavefield Redatuming (FWR) is used to retrieved and enhance the seismic data below the salt area, leading to a better seismic image quality and allowing us to focus on updating the velocity in target area below the salt. However, this redatuming approach requires a good overburden velocity model to retrieved good redatumed data. Thus, by using synthetic SEAM model, our objective is to study on the accuracy of the overburden velocity model required for imaging beneath complex overburden. The results show that the kinematic components of wave propagation are preserved through redatuming even with heavily smoothed overburden velocity model.


2019 ◽  
Vol 7 (2) ◽  
pp. SB43-SB52 ◽  
Author(s):  
Adriano Gomes ◽  
Joe Peterson ◽  
Serife Bitlis ◽  
Chengliang Fan ◽  
Robert Buehring

Inverting for salt geometry using full-waveform inversion (FWI) is a challenging task, mostly due to the lack of extremely low-frequency signal in the seismic data, the limited penetration depth of diving waves using typical acquisition offsets, and the difficulty in correctly modeling the amplitude (and kinematics) of reflection events associated with the salt boundary. However, recent advances in reflection FWI (RFWI) have allowed it to use deep reflection data, beyond the diving-wave limit, by extracting the tomographic term of the FWI reflection update, the so-called rabbit ears. Though lacking the resolution to fully resolve salt geometry, we can use RFWI updates as a guide for refinements in the salt interpretation, adding a partially data-driven element to salt velocity model building. In addition, we can use RFWI to update sediment velocities in complex regions surrounding salt, where ray-based approaches typically struggle. In reality, separating the effects of sediment velocity errors from salt geometry errors is not straightforward in many locations. Therefore, iterations of RFWI plus salt scenario tests may be necessary. Although it is still not the fully automatic method that has been envisioned for FWI, this combined approach can bring significant improvement to the subsalt image, as we examine on field data examples from the Gulf of Mexico.


2016 ◽  
Author(s):  
Nathaniel Cockrell ◽  
Khaled Abdelaziz ◽  
Kun Jiao ◽  
Adrian Montgomery ◽  
David Dangle ◽  
...  

Geophysics ◽  
2021 ◽  
pp. 1-73
Author(s):  
Hani Alzahrani ◽  
Jeffrey Shragge

Data-driven artificial neural networks (ANNs) offer a number of advantages over conventional deterministic methods in a wide range of geophysical problems. For seismic velocity model building, judiciously trained ANNs offer the possibility of estimating high-resolution subsurface velocity models. However, a significant challenge of ANNs is training generalization, which is the ability of an ANN to apply the learning from the training process to test data not previously encountered. In the context of velocity model building, this means learning the relationship between velocity models and the corresponding seismic data from a set of training data, and then using acquired seismic data to accurately estimate unknown velocity models. We ask the following question: what type of velocity model structures need be included in the training process so that the trained ANN can invert seismic data from a different (hypothetical) geological setting? To address this question, we create four sets of training models: geologically inspired and purely geometrical, both with and without background velocity gradients. We find that using geologically inspired training data produce models with well-delineated layer interfaces and fewer intra-layer velocity variations. The absence of a certain geological structure in training models, though, hinders the ANN's ability to recover it in the testing data. We use purely geometric training models consisting of square blocks of varying size to demonstrate the ability of ANNs to recover reasonable approximations of flat, dipping, and curved interfaces. However, the predicted models suffer from intra-layer velocity variations and non-physical artifacts. Overall, the results successfully demonstrate the use of ANNs in recovering accurate velocity model estimates, and highlight the possibility of using such an approach for the generalized seismic velocity inversion problem.


Sign in / Sign up

Export Citation Format

Share Document