velocity anomalies
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 60)

H-INDEX

33
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Junjiang Zhu ◽  
Sanzhong Li ◽  
Huilin Xing ◽  
Changsheng Wang ◽  
Guoming Yang ◽  
...  

ABSTRACT We analyzed 37 large oceanic intraplate earthquakes (M >6). The largest (M >7) are mainly concentrated under the Indian Ocean. Moderate events (6 < M < 7) are sparsely distributed under the Indian Ocean and other oceans where lithospheric ages are between 90 Ma and 20 Ma. Oceanic intraplate events related to mantle plumes or hotspots are rare, though low-velocity anomalies beneath hotspots are a common feature. Tomographic cross sections for Indian Ocean areas with large intraplate earthquakes indicate strong heterogeneity in the mantle. These earthquakes are explained by shallow stress variations caused by a combination of tectonic forces including slab-pull, ridge-push, drag by mantle flow, plume-push, and buoyancy forces as a consequence of low-velocity anomalies in the mantle. Oceanic intraplate seismicity in the Indian Ocean is related to the large-scale, low-velocity anomaly structure around the Ninety East Ridge.


2022 ◽  
Author(s):  
A. P. Singh ◽  
O. P. Mishra ◽  
O. P. Singh

Abstract Our detailed analysis of high-quality arrival time data recorded by the local seismographic network using three-dimensional seismic tomography of the Shillong Plateau region using high-quality arrival times of the body wave phases recorded at a dense temporary seismic network. This technique is used to understand the heterogeneities of the crust and its implications for pop-up tectonics characterizing evaluation the of the Shillong Plateau. We investigated an area covering ~150 ×100 km2 that revealed seismicity to be confined in a depth range ≤ 60 km. High - velocity anomalies in the upper crust appear to be responsible for intense small to moderate seismic activity in the region. Crustal seismic velocities inferred from 3-D seismic tomography showed significant lateral heterogeneities beneath the lithosphere of the Shillong Plateau. High-velocity anomalies in the uppermost crust, interpreted as the Shillong Plateau act as a geometric asperity where interseismic strain may accumulate. Low-velocity anomalies in the lower crust probably play a major role to accommodating the stresses generated due to plate separation, culminating in future sources of great earthquakes. The geological faults are well imaged in the cross-sections and support the concept of Pop-up tectonics beneath the Shillong of NE India.


Author(s):  
Pavla Hrubcová ◽  
Václav Vavryčuk

AbstractThe Tonga subduction zone in the south-west Pacific is the fastest convergent plate boundary in the world with the most active mantle seismicity. This zone shows unique tectonic features including Samoan volcanic lineament of plume-driven origin near the northern rim of the Tonga subducting slab. The proximity of the Samoa hotspot to the slab is enigmatic and invokes debates on interactions between the Samoa plume and the Tonga subduction. Based on long-term observations of intermediate and deep-focus Tonga earthquakes reported in the Global Centroid Moment Tensor (CMT) catalog, we provide novel detailed imaging of this region. Accurate traveltime residua of the P- and S-waves recorded at two nearby seismic stations of the Global Seismographic Network are inverted for the P- and S-wave velocities and their ratio and reveal their pronounced lateral variations. In particular, they differ for the southern and northern parts of the Tonga subduction region. While no distinct anomalies are detected in the southern Tonga segment, striking low-velocity anomalies associated with a high Vp/Vs ratio are observed in the northern Tonga segment close to the Samoa plume. These anomalies spread through the whole upper mantle down to depths of ~ 600 km. Together with the fast extension of the northern back-arc Lau Basin, slab deformation and geochemical enrichment in the northern Tonga region, they trace deep-seated magmatic processes and evidence an interaction of the Tonga subduction with the Samoa plume.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masayuki Obayashi ◽  
Junko Yoshimitsu ◽  
Daisuke Suetsugu ◽  
Hajime Shiobara ◽  
Hiroko Sugioka ◽  
...  

AbstractWe investigated the seismological structure beneath the equatorial Melanesian region, where is tectonically unique because an immense oceanic plateau, a volcanic chain and subduction zones meet. We conducted a multi-frequency P-wave tomography using data collected from an approximately 2-year-long seismic experiment around the Ontong Java Plateau (OJP). High-velocity anomalies were revealed beneath the center of the OJP at a depth of ~ 150 km, the middle-eastern edge of the OJP at depths of 200–300 km, and in the mantle transition zone beneath and around the OJP; low-velocity anomalies were observed along the Caroline volcanic island chain above 450 km depth. These anomalies are considered to be associated with the thick lithosphere of the OJP, remnant dipping Pacific slab, stagnant Pacific slab, and a sheet-like upwelling. The broad stagnant slab was formed due to rapid trench retreat from 48 to 25 Ma until when the OJP with thick lithosphere collided with a subduction boundary of the Pacific and Australian plates. This collision triggered slab breakoff beneath the arc where the dipping slab remained. The stagnant Pacific slab in the mantle transition zone restricted the plume upwelling from the lower mantle causing sheet-like deformed upwelling in the upper mantle.


2021 ◽  
Author(s):  
Kirill Gennadievich Gadylshin ◽  
Vladimir Albertovich Cheverda ◽  
Danila Nikolaevich Tverdokhlebov

Abstract Seismic surveys in the vast territory of Eastern Siberia are carried out in seismic and geological conditions of varying complexity. Obtaining a high-quality dynamic seismic image for the work area is a priority task in the states of contrasting heterogeneities of the near-surface. For this, it is necessary to restore an effective depth-velocity model that provides compensation for velocity anomalies and calculates static corrections. However, for the most complex near-surface structure, for example, the presence of trap intrusions and tuffaceous formations, the information content of the velocity models of the near-surface area obtained based on tomographic refinement turns out to be insufficient, and a search for another solution is required. The paper considers an approach based on Full Waveform Inversion (FWI). As the authors showed earlier, multiples associated with the free surface reduce the resolution of this approach. But their use increases the stability of the solution in the presence of uncorrelated noise. Therefore, at the first stage of FWI, the full wavefield is used, including free surface-related multiples, but they are suppressed in the next steps of the data processing. The results obtained demonstrate the ability of the FWI to restore complex geological structures of the near-surface area, even in the presence of high-velocity anomalies (trap intrusions).


Geophysics ◽  
2021 ◽  
pp. 1-45
Author(s):  
Guoxiong Chen ◽  
Qiuming Cheng ◽  
Yinhe Luo ◽  
Yingjie Yang ◽  
Hongrui Xu ◽  
...  

As a new emerging seismic method for delineating subsurface structure, the potential of ambient noise tomography is investigated for mineral deposit targeting at exploration scale. This passive seismic technique was used to image the subsurface 3-D shear-wave velocity of the Caosiyao porphyry molybdenum (Mo) deposit in the North China Craton. Intriguingly, the key structures of this giant porphyry mineral system down to the depth of 2 km are characterized by distinct shear-wave velocity anomalies, with ore deposition sites and fluid pathways (faults) characterized by distinct velocity lows, while fluid drivers (granites) generate velocity highs. The 3-D shear-wave velocity anomalies, along with seismic reflection profile and potential field data, allow us to delineate the deep-seated ore-controlling structures including fault systems, granitic plutons and even ore deposition sites under thickly covered sediments in the study area. The results suggest that the occurrence of the Caosiyao ore deposit is closely related to the huge amount of magma fluid intruding along the channel of Datong-Shangyi fault at a depth of gt;2 km. Our study demonstrates that the ambient noise tomography technique has the accuracy and resolution needed for mineral exploration targeting at deposit scale, with a relatively lower environmental impact as well as lower cost than active-source seismology.


2021 ◽  
Author(s):  
Claudia Kristina Rossavik

Llaima is a glaciated, basaltic-andesitic stratocone in the South-Central Andean Volcanic Zone. It is one of the largest and most active volcanoes in Chile. However, uncertainty remains regarding the depths and geometry of where magma is stored and the routes which it takes towards the Earth's surface. To provide a structural framework for the interpretation of petrological and geochemical data, I apply ambient noise tomography (ANT) to produce a 3-D shear wave velocity (vs) model of Llaima's magmatic plumbing. The results of this project show slow shear wave velocity anomalies within the upper 8 km of the crust which are interpreted as the locations of upper and lower magma reservoirs. Among the structures that are revealed by fast shear wave velocity anomalies is a geometry that is interpreted as a dike within a cluster of volcano tectonic (VT) activity. This VT cluster has been suggested to have followed the 2010 M8.8 Maule megathrust earthquake off the coast of Chile (Mora-Stock et al., 2014; Franco, 2019). I use information that has been derived from previous studies such as the coordinates of scoria cones along Llaima's flanks, gravitational anomalies, and local seismicity (which includes the depths and locations of volcano tectonic and long period seismicity) to place the resulting model within a framework that provides insight on the current state of this magmatic system.


Author(s):  
Qingyang Song ◽  
Hidenori Aiki

AbstractIntraseasonal waves in the tropical Atlantic Ocean have been found to carry prominent energy that affects interannual variability of zonal currents. This study investigates energy transfer and interaction of wind-driven intraseasonal waves using single-layer model experiments. Three sets of wind stress forcing at intraseasonal periods of around 30 days, 50 days and 80 days with a realistic horizontal distribution are employed separately to excite the second baroclinic mode in the tropical Atlantic. A unified scheme for calculating the energy flux, previously approximated and used for the diagnosis of annual Kelvin and Rossby waves, is utilized in the present study in its original form for intraseasonal waves. Zonal velocity anomalies by Kelvin waves dominate the 80-day scenario. Meridional velocity anomalies by Yanai waves dominate the 30-day scenario. In the 50-day scenario, the two waves have comparable magnitudes. The horizontal distribution of wave energy flux is revealed. In the 30-day and 50-day scenarios, a zonally alternating distribution of cross-equatorial wave energy flux is found. By checking an analytical solution excluding Kelvin waves, we confirm that the cross-equatorial flux is caused by the meridional transport of geopotential at the equator. This is attributed to the combination of Kelvin and Yanai waves and leads to the asymmetric distribution of wave energy in the central basin. Coastally-trapped Kelvin waves along the African coast are identified by along-shore energy flux. In the north, the bend of the Guinea coast leads the flux back to the equatorial basin. In the south, the Kelvin waves strengthened by local wind transfer the energy from the equatorial to Angolan regions.


2021 ◽  
Vol 13 (14) ◽  
pp. 2691
Author(s):  
Hoonyol Lee ◽  
Heejeong Seo ◽  
Hyangsun Han ◽  
Hyeontae Ju ◽  
Joohan Lee

Regional changes in the flow velocity of Antarctic glaciers can affect the ice sheet mass balance and formation of surface crevasses. The velocity anomaly of a glacier can be detected using the Double-Differential Interferometric Synthetic Aperture Radar (DDInSAR) technique that removes the constant displacement in two Differential Interferometric SAR (DInSAR) images at different times and shows only the temporally variable displacement. In this study, two circular-shaped ice-velocity anomalies in Campbell Glacier, East Antarctica, were analyzed by using 13 DDInSAR images generated from COSMO-SkyMED one-day tandem DInSAR images in 2010–2011. The topography of the ice surface and ice bed were obtained from the helicopter-borne Ice Penetrating Radar (IPR) surveys in 2016–2017. Denoted as A and B, the velocity anomalies were in circular shapes with radii of ~800 m, located 14.7 km (A) and 11.3 km (B) upstream from the grounding line of the Campbell Glacier. Velocity anomalies were up to ~1 cm/day for A and ~5 cm/day for B. To investigate the cause of the two velocity anomalies, the ice surface and bed profiles derived from the IPR survey crossing the anomalies were analyzed. The two anomalies lay over a bed hill along the glacial valley where stick-slip and pressure melting can occur, resulting in temporal variation of ice velocity. The bright radar reflection and flat hydraulic head at the ice bed of A observed in the IPR-derived radargram strongly suggested the existence of basal water in a form of reservoir or film, which caused smaller friction and the reduced variation of stick-slip motion compared to B. Crevasses began to appear at B due to tensile stress at the top of the hill and the fast flow downstream. The sporadic shift of the location of anomalies suggests complex pressure melting and transportation of the basal water over the bed hill.


Sign in / Sign up

Export Citation Format

Share Document