Resolving near-seabed velocity anomalies: Deep water offshore eastern India

Geophysics ◽  
2008 ◽  
Vol 73 (5) ◽  
pp. VE235-VE241 ◽  
Author(s):  
Juergen Fruehn ◽  
Ian F. Jones ◽  
Victoria Valler ◽  
Pranaya Sangvai ◽  
Ajoy Biswal ◽  
...  

Imaging in deep-water environments poses a specific set of challenges, both in data preconditioning and velocity model building. These challenges include scattered, complex 3D multiples, aliased noise, and low-velocity shallow anomalies associated with channel fills and gas hydrates. We describe an approach to tackling such problems for data from deep water off the east coast of India, concentrating our attention on iterative velocity model building, and more specifically the resolution of near-surface and other velocity anomalies. In the region under investigation, the velocity field is complicated by narrow buried canyons ([Formula: see text] wide) filled with low-velocity sediments, which give rise to severe pull-down effects; possible free-gas accumulation below an extensive gas-hydrate cap, causing dimming of the image below (perhaps as a result of absorption); and thin-channel bodies with low-velocity fill. Hybrid gridded tomography using a conjugate gradient solver (with [Formula: see text] vertical cell size) was applied to resolve small-scale velocity anomalies (with thicknesses of about [Formula: see text]). Manual picking of narrow-channel features was used to define bodies too small for the tomography to resolve. Prestack depth migration, using a velocity model built with a combination of these techniques, could resolve pull-down and other image distortion effects in the final image. The resulting velocity field shows high-resolution detail useful in identifying anomalous geobodies of potential exploration interest.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. U39-U47 ◽  
Author(s):  
Hui Liu ◽  
Hua-wei Zhou ◽  
Wenge Liu ◽  
Peiming Li ◽  
Zhihui Zou

First-arrival traveltime tomography is a popular approach to building the near-surface velocity models for oil and gas exploration, mining, geoengineering, and environmental studies. However, the presence of velocity-inversion interfaces (VIIs), across which the overlying velocity is higher than the underlying velocity, might corrupt the tomographic solutions. This is because most first-arrival raypaths will not traverse along any VII, such as the top of a low-velocity zone. We have examined the impact of VIIs on first-arrival tomographic velocity model building of the near surface using a synthetic near-surface velocity model. This examination confirms the severe impact of VIIs on first-arrival tomography. When the source-to-receiver offset is greater than the lateral extent of the VIIs, good near-surface velocity models can still be established using a multiscale deformable-layer tomography (DLT), which uses a layer-based model parameterization and a multiscale scheme as regularization. Compared with the results from a commercial grid-based tomography, the DLT delivers much better near-surface statics solutions and less error in the images of deep reflectors.



Geophysics ◽  
2011 ◽  
Vol 76 (3) ◽  
pp. WA13-WA21 ◽  
Author(s):  
Mamoru Takanashi ◽  
Ilya Tsvankin

Nonhyperbolic moveout analysis plays an increasingly important role in velocity model building because it provides valuable information for anisotropic parameter estimation. However, lateral heterogeneity associated with stratigraphic lenses such as channels and reefs can significantly distort the moveout parameters, even when the structure is relatively simple. We analyze the influence of a low-velocity isotropic lens on nonhyperbolic moveout inversion for horizontally layered VTI (transversely isotropic with a vertical symmetry axis) models. Synthetic tests demonstrate that a lens can cause substantial, laterally varying errors in the normal-moveout velocity [Formula: see text] and the anellipticity parameter [Formula: see text]. The area influenced by the lens can be identified using the residual moveout after the nonhyperbolic moveout correction as well as the dependence of errors in [Formula: see text] and [Formula: see text] on spreadlength. To remove such errors in [Formula: see text] and [Formula: see text], we propose a correction algorithm designed for a lens embedded in a horizontally layered overburden. This algorithm involves estimation of the incidence angle of the ray passing through the lens for each recorded trace. With the assumption that lens-related perturbation of the raypath is negligible, the lens-induced traveltime shifts are computed from the corresponding zero-offset time distortion (i.e., from “pull-up” or “push-down” anomalies). Synthetic tests demonstrate that this algorithm substantially reduces the errors in the effective and interval parameters [Formula: see text] and [Formula: see text]. The corrected traces and reconstructed “background” values of [Formula: see text] and [Formula: see text] are suitable for anisotropic time imaging and producing a high-quality stack.









2020 ◽  
Author(s):  
O. Bouhdiche ◽  
L. Vivin ◽  
P. Plasterie ◽  
T. Rebert ◽  
M. Retailleau ◽  
...  


2020 ◽  
Author(s):  
A. Kontakis ◽  
D. Rovetta ◽  
D. Colombo ◽  
E. Sandoval-Curiel ◽  
P.V. Petrov ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document