Toward Seismic Microzonation—2-D Modeling and Ambient Seismic Noise Measurements: The Case of an Embanked, Deep Alpine Valley

2005 ◽  
Vol 21 (3) ◽  
pp. 635-651 ◽  
Author(s):  
Corine Frischknecht ◽  
Philippe Rosset ◽  
Jean-Jacques Wagner

In the Sion area of Switzerland, part of a deep, embanked sediment-filled valley, investigations on soil site effects have been conducted using two independent methods. Two-dimensional (2-D) modeling was performed with a program based on the Indirect Boundary Element Method (Pedersen et. al. 1994). Numerical simulations allow taking into account the subsurface geometry of the valley and its peculiar characteristics, such as a variable shape ratio and a high shear-wave velocity contrast. The H/V method has been applied on ambient seismic noise measurements recorded on sites as close as possible to the 2-D modeling. This technique allows capturing the fundamental resonant frequency of the deepest sediments as well as identifying the existence of a surficial deposit. Both approaches agree on the fact that the fundamental resonant frequency of the valley is below 1 Hz. The amplification level of the predominant frequency obtained with numerical simulation is up to two times higher than the one given by the H/V ratio. These results provide the basis for further investigations in order to resolve differences.

2004 ◽  
Vol 161 (7) ◽  
pp. 1549-1559 ◽  
Author(s):  
Z. Al Yuncha ◽  
F. Luz�n ◽  
A. Posadas ◽  
J. Mart�n ◽  
G. Alguacil ◽  
...  

2005 ◽  
Vol 2 (2) ◽  
pp. 79
Author(s):  
Mohd Khairul Mohd Salleh ◽  
Mohamad Syukri Suhaili ◽  
Zuhani Ismail ◽  
Zaiki Awang

A simple design of a metallic circular cross-sectional air-filled cavity is presented. Two probes of varied lengths are used to excite TE112-mode wave into the cavity to give a resonant frequency of 5.86 GHz. The experiments show that the resonant frequency of the cavity resonator decreases as the lengths of the probes are increased. The shortest probe in the range of study gives the closest resonant frequency to the one desired.


Landslides ◽  
2021 ◽  
Author(s):  
Chuang Song ◽  
Chen Yu ◽  
Zhenhong Li ◽  
Veronica Pazzi ◽  
Matteo Del Soldato ◽  
...  

AbstractInterferometric Synthetic Aperture Radar (InSAR) enables detailed investigation of surface landslide movements, but it cannot provide information about subsurface structures. In this work, InSAR measurements were integrated with seismic noise in situ measurements to analyse both the surface and subsurface characteristics of a complex slow-moving landslide exhibiting multiple failure surfaces. The landslide body involves a town of around 6000 inhabitants, Villa de la Independencia (Bolivia), where extensive damages to buildings have been observed. To investigate the spatial-temporal characteristics of the landslide motion, Sentinel-1 displacement time series from October 2014 to December 2019 were produced. A new geometric inversion method is proposed to determine the best-fit sliding direction and inclination of the landslide. Our results indicate that the landslide is featured by a compound movement where three different blocks slide. This is further evidenced by seismic noise measurements which identified that the different dynamic characteristics of the three sub-blocks were possibly due to the different properties of shallow and deep slip surfaces. Determination of the slip surface depths allows for estimating the overall landslide volume (9.18 · 107 m3). Furthermore, Sentinel-1 time series show that the landslide movements manifest substantial accelerations in early 2018 and 2019, coinciding with increased precipitations in the late rainy season which are identified as the most likely triggers of the observed accelerations. This study showcases  the potential of integrating InSAR and seismic noise techniques to understand the landslide mechanism from ground to subsurface.


2015 ◽  
Vol 42 (18) ◽  
pp. 7581-7588 ◽  
Author(s):  
Pier P. Overduin ◽  
Christian Haberland ◽  
Trond Ryberg ◽  
Fabian Kneier ◽  
Tim Jacobi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document