soil site
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 53)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Shikha Kapil ◽  
Monika Bhattu ◽  
Tarun Kumar ◽  
Vipasha Sharma

Abstract The current work was carried out to investigate serine enantiomers in bacterial cells. The bacteria isolated from the pomace dumping soil site (bacteria id A1C1) showed maximum growth (O.D600 = 1.97±0.4 X 109cells/ml) within 48h in the minimal salt media supplemented with L-serine. The isolated strain was identified as ‘Bacillus tequilensis’ through 16sRNA sequencing. The study’s peculiarity reflects the fact that the isolated strain was explored for the first time to detect the presence of serine enantiomers. The strain was quantified for D-serine content by using RP-HPLC. The D-serine concentration was calculated as 0.919±0.02 nM in the bacterial cellular fraction by using a standard curve plot and linear curve equation. Further, recovery % was also calculated for the spiked samples which vary from 85-90%. The optimum growth parameters were recorded as 37℃±0.5, 150±0.5 RPM, and 7±0.5pH. The strain was Gram-positive, rod shape, large, irregular, off-white-coloured, and synthesized endospores. A1C1 showed positive results (within 14±2h of incubation) for indole production, lactose fermentation, and protease (0.9 mm, clear zone). The antibacterial assay showed 5% and 2% efficacy of the extracellular fraction against MTCC 40 and MTCC 11949 respectively within 12h of incubation. These results demonstrate that Bacillus tequilensis A1C1 has antibacterial activity, the potential to secrete extracellular enzymes, and D-serine content in the intracellular fraction of the cultivated cells. Given results demonstrate the industrial significance and implication of the isolated strain for the synthesis of commercially valuable products.


2021 ◽  
Vol 8 (4) ◽  
pp. 231-236
Author(s):  
Sagar N. Ingle ◽  
◽  
M. S. S. Nagaraju ◽  
Priya S. Gadge ◽  
D. P. Deshmukh ◽  
...  

A study was undertaken to evaluate the soils in Bareli watershed, Seoni district of Madhya Pradesh for sustainable land use planning. Five soil series namely, Diwartola, Diwara, Bareli-1, Bareli-2 and Bareli-3 were tentatively identified and mapped into twenty-four mapping units and a soil map was generated using remote sensing and Geographic Information System (GIS) techniques. The land information generated during soil survey has been used to evaluate land capability, land irrigability, soil productivity and soil-site suitability for some medicinal, aromatic and spices crops. The soils were grouped into land capability sub-classes IVs and IVst and land irrigability sub-classes 2st, 3s, 3st and 4st. Soils of Diwartola, Bareli-1 and Bareli-3 were average and soils of Diwara and Bareli-2 were poor in soil productivity based on limitations of erosion, drainage and physicochemical properties. Soil-site suitability assessment reveals that soils of Bareli-1 were moderately suitable (S2) for cultivation of medicinal and spices crops like Ashwagandha, Mucana, Davana, Lemongrass, Turmeric and Ginger with moderate limitations of effective depth and slope, while, soils of Diwartola and Bareli-3 were marginally suitable (S3) for cultivation of these crops.


2021 ◽  
Author(s):  
Shikha Kapil ◽  
Monika Bhattu ◽  
Tarun Kumar ◽  
Vipasha Sharma

Abstract The bacteria isolated from the pomace dumping soil site (bacteria id A1C1) showed maximum growth (O.D600 = 1.97±0.4 X 109 cells/ml) within 48h in the minimal salt media supplemented with L-serine. The isolated strain was identified as ‘Bacillus tequilensis’ through 16sRNA sequencing. The strain was quantified for D-serine content by using RP-HPLC. The D-serine concentration was calculated as 0.919±0.02 nM in the bacterial cellular fraction by using a standard curve plot and linear curve equation. Further, recovery % was also calculated for the spiked samples which vary from 85-90%. The study’s peculiarity reflects the fact that the isolated strain was explored for the first time to detect the presence of serine enantiomers. The biochemical features also showed 70% similarity to the standard strain Bacillus tequilensis 10bT. The optimum growth parameters were recorded as 37℃±0.5, 150±0.5 RPM, and 7±0.5pH. The strain was Gram-positive and synthesized endospores. Morphological results showed its rod shape, large, irregular, and off-white-coloured colonies. A1C1 was also tested for the production of secondary metabolites and enzymes. A1C1 showed positive results for indole production, lactose fermentation, protease, and gelatinase whereas, negative results for catalase, MR-VP, citrate utilization, cellulase, amylase, and pectinase. Further, the strain was assayed for PGPR attributes and showed a negative phosphate solubilization index and IAA production. The antibacterial assay showed 5% and 2% efficacy of the extracellular fraction against MTCC 40 and MTCC 11949 respectively. These results demonstrate that Bacillus tequilensis A1C1 has antibacterial activity, the potential to secrete extracellular enzymes, and D-serine content in the intracellular fraction of the cultivated cells.


2021 ◽  
Author(s):  
Shikha Kapil ◽  
Monika Bhattu ◽  
Tarun Kumar ◽  
Vipasha Sharma

Abstract The bacteria isolated from the pomace dumping soil site (bacteria id A1C1) showed maximum growth (O.D600 = 1.97±0.4 X 109 cells/ml) within 48h in the minimal salt media supplemented with L-serine. The isolated strain was identified as ‘Bacillus tequilensis’ through 16sRNA sequencing. The strain was quantified for D-serine content by using RP-HPLC. The D-serine concentration was calculated as 0.919±0.02 nM in the bacterial cellular fraction by using a standard curve plot and linear curve equation. Further, recovery % was also calculated for the spiked samples which vary from 85-90%. The study’s peculiarity reflects the fact that the isolated strain was explored for the first time to detect the presence of serine enantiomers. The biochemical features also showed 70% similarity to the standard strain Bacillus tequilensis 10bT. The optimum growth parameters were recorded as 37℃±0.5, 150±0.5 RPM, and 7±0.5pH. The strain was Gram-positive and synthesized endospores. Morphological results showed its rod shape, large, irregular, and off-white-coloured colonies. A1C1 was also tested for the production of secondary metabolites and enzymes. A1C1 showed positive results for indole production, lactose fermentation, protease, and gelatinase whereas, negative results for catalase, MR-VP, citrate utilization, cellulase, amylase, and pectinase. Further, the strain was assayed for PGPR attributes and showed a negative phosphate solubilization index and IAA production. The antibacterial assay showed 5% and 2% efficacy of the extracellular fraction against MTCC 40 and MTCC 11949 respectively. These results demonstrate that Bacillus tequilensis A1C1 has antibacterial activity, the potential to secrete extracellular enzymes, and D-serine content in the intracellular fraction of the cultivated cells.


Geophysics ◽  
2021 ◽  
pp. 1-50
Author(s):  
David C. Nobes

When studying indigenous sites, especially sacred sites such as burials, the needs and wishes of the indigenous people are paramount; the site integrity must be respected and the site must be left intact and undisturbed. Non-invasive, non-destructive geophysical imaging is well suited to such investigations, but suspicion within indigenous communities because of past transgressions are a barrier to widespread use; scepticism is not uncommon, but we always managed to convince the sceptics. We present an overview of results from 10 Maori (indigenous peoples of New Zealand) sites in the South Island of New Zealand: 1 historic burial site, 6 modern burial sites that also had historical use, 1 historic battle site, 1 prehistoric site that may have been a burial site, and 1 prehistoric site used for food storage that was tapu (sacred). Our approach was to let them ask us to delineate areas of importance, e.g., old burial sites. There are, naturally, processes and protocols, cultural and technical, that we followed. The sites comprised a range of lithologies and soil types: 1 site where clay soil overlay limestone; 5 sites where loess (airborne silt) overlay basalt; 1 set of inland silty soil sites; 1 site on peat soils overlying sandy gravels; and 2 sites in coastal sands. The geophysical responses of the sites cluster into three groups: Horizontal loop electromagnetics (HLEM) and magnetic field methods worked well for the clay soil site, and once the effects of the conductive clay response were removed by filtering, ground penetrating radar (GPR) worked well. HLEM and magnetic results were good to equivocal on the silty and peaty sites, whereas GPR excelled at delineating anomalous features, particularly burials, which yielded clear characteristic diffraction responses. Finally, results for coastal sand sites were disappointing. Such sites appear to be too dynamic to yield useful results.


2021 ◽  
Author(s):  
Shikha Kapil ◽  
Monika Bhattu ◽  
Tarun Kumar ◽  
Vipasha Sharma

Abstract The bacteria isolated from the pomace dumping soil site (bacteria id A1C1) showed maximum growth (O.D600 = 1.97 ± 0.4 X 109 cells/ml) within 48h in the minimal salt media supplemented with L-serine. The isolated strain was identified as ‘Bacillus tequilensis’ through 16sRNA sequencing. The strain was quantified for D-serine content by using RP-HPLC. The D-serine concentration was calculated as 0.919 ± 0.02 nM in the bacterial cellular fraction by using a standard curve plot and linear curve equation. Further, recovery % was also calculated for the spiked samples which vary from 85–90%. The study’s peculiarity reflects the fact that the isolated strain was explored for the first time to detect the presence of serine enantiomers. The biochemical features also showed 70% similarity to the standard strain Bacillus tequilensis 10bT. The optimum growth parameters were recorded as 37℃±0.5, 150 ± 0.5 RPM, and 7 ± 0.5pH. The strain was Gram-positive and synthesized endospores. Morphological results showed its rod shape, large, irregular, and off-white-coloured colonies. A1C1 was also tested for the production of secondary metabolites and enzymes. A1C1 showed positive results for indole production, lactose fermentation, protease, and gelatinase whereas, negative results for catalase, MR-VP, citrate utilization, cellulase, amylase, and pectinase. Further, the strain was assayed for PGPR attributes and showed a negative phosphate solubilization index and IAA production. The antibacterial assay showed 5% and 2% efficacy of the extracellular fraction against MTCC 40 and MTCC 11949 respectively. These results demonstrate that Bacillus tequilensis A1C1 has antibacterial activity, the potential to secrete extracellular enzymes, and D-serine content in the intracellular fraction of the cultivated cells.


Author(s):  
Ruibin Hou ◽  
John X. Zhao

ABSTRACT This article presents a nonlinear site amplification model for ground-motion prediction equations (GMPEs), using site period as site-effect proxy based on the measured shear-wave velocity profiles of selected KiK-net and K-NET sites in Japan. This model was derived using 1D equivalent-linear site-response analysis for a total of 516 measured soil-site shear-wave velocity profiles subjected to a total of 912 components of rock-site records. The modulus reduction and damping curves for each soil layer were assigned based on the soil-type description for a particular layer. The site period and site impedance ratio affect both the linear and nonlinear parts of this study, and were used as the site parameters in the 1D amplification model. A large impedance ratio enhances the amplification ratios when the site responds elastically and enhances the nonlinear response when the site develops a significant nonlinear response. The effects of moment magnitude and source distance on the linear part of the 1D amplification model were also incorporated in the model. To implement the 1D amplification model into GMPEs, a model adjustment is required to match the GMPE amplification ratio at weak motion and to retain the nonlinear amplification ratio at the strong motion of the 1D model. The two-step adjustment method by Zhao, Hu, et al. (2015) was adopted in this study with significant modifications. It is not possible to obtain a credible second-step adjustment parameter using the GMPEs dataset only. We proposed three methods for calculating the scale factors. Method 1 is a constant angle in a 30°–60° range for all spectral periods; method 2 was based on the GMPE dataset and 1-D model parameters; and method 3 was based on the strong-motion records used for the 1D site modeling. A simple second-step adjustment factor leads to smoothing amplification ratios and soil-site spectrum.


2021 ◽  
Vol 26 (4) ◽  
pp. 45-58
Author(s):  
Nashmeel Khudhur ◽  
Sidra Qubad Yassin ◽  
Ahmed Saman Hassan ◽  
Mortatha Nawzad Omar

Soil pollution by some heavy metals including: Cr, Mn, Fe, Ni, Cu, Zn, As, Mo, Cd and Pb from northern industrial area of Erbil City was assessed. The contamination indices including: geoaccumulation (Igeo), contamination factor (CF), enrichment factor (EF), degree of contamination (Cdeg), pollution load index (PLI) and element contamination index (ECI) were applied to assess soil pollution in Erbil North Industrial area at three sites (for both surface and sub-surface soils). Maximum Fe value 34243.6 ppm was recorded in sub-surface soil (site 2). Maximum values 265.4, 248.8, 98.23 and 397.45 ppm were recorded for Cr, Ni, Cu and Zn at sub-surface soil (site 3). Whereas, maximum values of 22.52, 5.36, 23.9, 6.12 and 65.67 ppm were recorded for As, Mo, Ag, Cd and Pb at surface soil (site 3). Results of analysed heavy metals for soil Cr, Mn, Fe, Ni, Cu, Zn, As, Mo, Ag, Cd and Pb have shown that the studied sites were severely contaminated with Cd, so the maximum detected Cd concentration was 6.12 ppm in surface soil (300 meters away from the industrial area). The soil pollution in the studied area was classified as moderate to strong surface and sub-surface soil contamination. Behavioral toxicity experiment showed slight growth effect on Lepidium sativum L.


Sign in / Sign up

Export Citation Format

Share Document