scholarly journals A NEW ITERATIVE METHOD FOR SOLVING SPLIT FEASIBILITY PROBLEM

2020 ◽  
Vol 10 (3) ◽  
pp. 986-1004
Author(s):  
Chanchal Garodia ◽  
◽  
Izhar Uddin
2018 ◽  
Vol 34 (3) ◽  
pp. 313-320
Author(s):  
QIAO-LI DONG ◽  
◽  
DAN JIANG ◽  

The split feasibility problem (SFP) has many applications, which can be a model for many inverse problems where constraints are imposed on the solutions in the domain of a linear operator as well as in the operator’s range. In this paper, we introduce a new projection method to solve the SFP and prove its convergence under standard assumptions. Our results improve previously known corresponding methods and results of this area. The preliminary numerical experiments illustrates the advantage of our proposed methods.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Youli Yu

An explicit iterative method with self-adaptive step-sizes for solving the split feasibility problem is presented. Strong convergence theorem is provided.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Huanhuan Cui ◽  
Haixia Zhang

In this paper, we consider the split feasibility problem in Banach spaces. By applying the shrinking projection method, we propose an iterative method for solving this problem. It is shown that the algorithm under two different choices of the stepsizes is strongly convergent to a solution of the problem.


Optimization ◽  
2021 ◽  
pp. 1-31
Author(s):  
Guash Haile Taddele ◽  
Poom Kumam ◽  
Anteneh Getachew Gebrie ◽  
Jamilu Abubakar

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Kanyanee Saechou ◽  
Atid Kangtunyakarn

Abstract In this paper, we first introduce the two-step intermixed iteration for finding the common solution of a constrained convex minimization problem, and also we prove a strong convergence theorem for the intermixed algorithm. By using our main theorem, we prove a strong convergence theorem for the split feasibility problem. Finally, we apply our main theorem for the numerical example.


Sign in / Sign up

Export Citation Format

Share Document