constrained convex minimization problem
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 1 (2) ◽  
pp. 106-132
Author(s):  
Austine Efut Ofem ◽  
Unwana Effiong Udofia ◽  
Donatus Ikechi Igbokwe

The purpose of this paper is to introduce a new iterative algorithm to approximate the fixed points of almost contraction mappings and generalized α-nonexpansive mappings. Also, we show that our proposed iterative algorithm converges weakly and strongly to the fixed points of almost contraction mappings and generalized α-nonexpansive mappings. Furthermore, it is proved analytically that our new iterative algorithm converges faster than one of the leading iterative algorithms in the literature for almost contraction mappings. Some numerical examples are also provided and used to show that our new iterative algorithm has better rate of convergence than all of S, Picard-S, Thakur and M iterative algorithms for almost contraction mappings and generalized α-nonexpansive mappings. Again, we show that the proposed iterative algorithm is stable with respect to T and data dependent for almost contraction mappings. Some applications of our main results and new iterative algorithm are considered. The results in this article are improvements, generalizations and extensions of several relevant results existing in the literature.


2021 ◽  
Vol 52 ◽  
Author(s):  
Maryam Yazdi

In this paper, we propose a new iterative scheme with the help of the gradient- projection algorithm (GPA) for finding a common solution of an equilibrium problem, a constrained convex minimization problem, and a fixed point problem. Then, we prove some strong convergence theorems which improve and extend some recent results. Moreover, we give a numerical result to show the validity of our main theorem.


Author(s):  
M. Yazdi

The gradient-projection algorithm (GPA) plays an important role in solving constrained convex minimization problems. In this paper, we combine the GPA and averaged mapping approach to propose an explicit composite iterative scheme for finding a common solution of a generalized equilibrium problem and a constrained convex minimization problem. Then, we prove a strong convergence theorem which improves and extends some recent results.


2020 ◽  
Vol 30 (01) ◽  
pp. 2050004
Author(s):  
Firmin Andzembe Okoubi ◽  
Jonas Koko

We study a parallel non-overlapping domain decomposition method, based on the Nesterov accelerated gradient descent, for the numerical approximation of elliptic partial differential equations. The problem is reformulated as a constrained (convex) minimization problem with the interface continuity conditions as constraints. The resulting domain decomposition method is an accelerated projected gradient descent with convergence rate [Formula: see text]. At each iteration, the proposed method needs only one matrix/vector multiplication. Numerical experiments show that significant (standard and scaled) speed-ups can be obtained.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Kanyanee Saechou ◽  
Atid Kangtunyakarn

Abstract In this paper, we first introduce the two-step intermixed iteration for finding the common solution of a constrained convex minimization problem, and also we prove a strong convergence theorem for the intermixed algorithm. By using our main theorem, we prove a strong convergence theorem for the split feasibility problem. Finally, we apply our main theorem for the numerical example.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 916
Author(s):  
Anchalee Sripattanet ◽  
Atid Kangtunyakarn

The purpose of this paper is to introduce an iterative algorithm of two sequences which depend on each other by using the intermixed method. Then, we prove a strong convergence theorem for solving fixed-point problems of nonlinear mappings and we treat two variational inequality problems which form an approximate modified generalized system of variational inequalities (MGSV). By using our main theorem, we obtain the additional results involving the split feasibility problem and the constrained convex minimization problem. In support of our main result, a numerical example is also presented.


2019 ◽  
Vol 12 (03) ◽  
pp. 1950042 ◽  
Author(s):  
Maryam Yazdi

The gradient-projection algorithm (GPA) plays an important role in solving constrained convex minimization problems. In this paper, we combine the GPA and averaged mapping approach to propose implicit and explicit composite iterative schemes for finding a common solution of an equilibrium problem and a constrained convex minimization problem. Then, we prove some strong convergence theorems which improve and extend some recent results.


Author(s):  
Taksaporn Sirirut ◽  
Pattanapong Tianchai

Let C and Q be closed convex subsets of real Hilbert spaces H1 and H2, respectively, and let g:C→R be a strictly real-valued convex function such that the gradient ∇g is an 1/L-ism with a constant L>0. In this paper, we introduce an iterative scheme using the gradient projection method, based on Mann’s type approximation scheme for solving the constrained convex minimization problem (CCMP), that is, to find a minimizer q∈C of the function g over set C. As an application, it has been shown that the problem (CCMP) reduces to the split feasibility problem (SFP) which is to find q∈C such that Aq∈Q where A:H1→H2 is a linear bounded operator. We suggest and analyze this iterative scheme under some appropriate conditions imposed on the parameters such that another strong convergence theorems for the CCMP and the SFP are obtained. The results presented in this paper improve and extend the main results of Tian and Zhang (2017) and many others. The data availability for the proposed SFP is shown and the example of this problem is also shown through numerical results.


Sign in / Sign up

Export Citation Format

Share Document