scholarly journals EXACT BOUND ON THE NUMBER OF LIMIT CYCLES ARISING FROM A PERIODIC ANNULUS BOUNDED BY A SYMMETRIC HETEROCLINIC LOOP

2020 ◽  
Vol 10 (1) ◽  
pp. 378-390 ◽  
Author(s):  
Xianbo Sun ◽  
◽  
2018 ◽  
Vol 28 (02) ◽  
pp. 1850026
Author(s):  
Yuanyuan Liu ◽  
Feng Li ◽  
Pei Dang

We consider the bifurcation in a class of piecewise polynomial systems with piecewise polynomial perturbations. The corresponding unperturbed system is supposed to possess an elementary or nilpotent critical point. First, we present 17 cases of possible phase portraits and conditions with at least one nonsmooth periodic orbit for the unperturbed system. Then we focus on the two specific cases with two heteroclinic orbits and investigate the number of limit cycles near the loop by means of the first-order Melnikov function, respectively. Finally, we take a quartic piecewise system with quintic piecewise polynomial perturbation as an example and obtain that there can exist ten limit cycles near the heteroclinic loop.


2012 ◽  
Vol 22 (12) ◽  
pp. 1250296 ◽  
Author(s):  
MAOAN HAN

In the study of the perturbation of Hamiltonian systems, the first order Melnikov functions play an important role. By finding its zeros, we can find limit cycles. By analyzing its analytical property, we can find its zeros. The main purpose of this article is to summarize some methods to find its zeros near a Hamiltonian value corresponding to an elementary center, nilpotent center or a homoclinic or heteroclinic loop with hyperbolic saddles or nilpotent critical points through the asymptotic expansions of the Melnikov function at these values. We present a series of results on the limit cycle bifurcation by using the first coefficients of the asymptotic expansions.


2018 ◽  
Vol 28 (08) ◽  
pp. 1850096 ◽  
Author(s):  
Hongying Zhu ◽  
Bin Qin ◽  
Sumin Yang ◽  
Minzhi Wei

In this paper, we study the Poincaré bifurcation of a nonlinear oscillator of generalized Liénard type by using the Melnikov function. The oscillator has weak damping terms. When the damping terms vanish, the oscillator has a heteroclinic loop connecting a nilpotent cusp to a hyperbolic saddle. Our results reveal that: (i) the oscillator can have at most four limit cycles bifurcating from the corresponding period annulus. (ii) There are some parameters such that three limit cycles emerge in the original periodic orbit domain. (iii) Especially, we give a rigorous proof that [Formula: see text] limit cycle(s) can emerge near the original singular loop and [Formula: see text] limit cycle(s) can emerge near the original elementary center with [Formula: see text].


2016 ◽  
Vol 26 (11) ◽  
pp. 1650180 ◽  
Author(s):  
Ali Bakhshalizadeh ◽  
Hamid R. Z. Zangeneh ◽  
Rasool Kazemi

In this paper, the asymptotic expansion of first-order Melnikov function of a heteroclinic loop connecting a cusp of order two and a hyperbolic saddle for a planar near-Hamiltonian system is given. Next, we consider the limit cycle bifurcations of a hyper-elliptic Liénard system with this kind of heteroclinic loop and study the least upper bound of limit cycles bifurcated from the period annulus inside the heteroclinic loop, from the heteroclinic loop itself and the center. We find that at most three limit cycles can be bifurcated from the period annulus, also we present different distributions of bifurcated limit cycles.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Junning Cai ◽  
Minzhi Wei ◽  
Guoping Pang

In the presented paper, the Abelian integral I h of a Liénard system is investigated, with a heteroclinic loop passing through a nilpotent saddle. By using a new algebraic criterion, we try to find the least upper bound of the number of limit cycles bifurcating from periodic annulus.


2021 ◽  
Author(s):  
Jihua Yang

Abstract This paper deals with the problem of limit cycles for the whirling pendulum equation ẋ = y, ẏ = sin x(cos x-r) under piecewise smooth perturbations of polynomials of cos x, sin x and y of degree n with the switching line x = 0. The upper bounds of the number of limit cycles in both the oscillatory and the rotary regions are obtained by using the Picard-Fuchs equations which the generating functions of the associated first order Melnikov functions satisfy. Further, the exact bound of a special case is given by using the Chebyshev system.


2015 ◽  
Vol 25 (05) ◽  
pp. 1550073
Author(s):  
Yunlei Ma ◽  
Yuhai Wu

In this paper, the number and distributions of limit cycles in a Z3-equivariant quintic planar polynomial system are studied. 24 limit cycles with two different configurations are shown in this quintic planar vector field by combining the methods of double homoclinic loops bifurcation, heteroclinic loop bifurcation and Poincaré–Bendixson Theorem. The results obtained are useful to the study of weakened 16th Hilbert problem.


2014 ◽  
Vol 24 (01) ◽  
pp. 1450004 ◽  
Author(s):  
Xianbo Sun ◽  
Hongjian Xi ◽  
Hamid R. Z. Zangeneh ◽  
Rasool Kazemi

In this article, we study the limit cycle bifurcation of a Liénard system of type (5,4) with a heteroclinic loop passing through a hyperbolic saddle and a nilpotent saddle. We study the least upper bound of the number of limit cycles bifurcated from the periodic annulus inside the heteroclinic loop by a new algebraic criterion. We also prove at least three limit cycles will bifurcate and six kinds of different distributions of these limit cycles are given. The methods we use and the results we obtain are new.


2004 ◽  
Vol 14 (08) ◽  
pp. 2905-2914 ◽  
Author(s):  
YUHAI WU ◽  
MAOAN HAN ◽  
XIANFENG CHEN

The Hopf bifurcation, saddle connection loop bifurcation and Poincaré bifurcation of the generalized Rayleigh–Liénard oscillator Ẍ+aX+2bX3+ε(c3+c2X2+c1X4+c4Ẋ2)Ẋ=0 are studied. It is proved that for the case a<0, b>0 the system has at most six limit cycles bifurcated from Hopf bifurcation or has at least seven limit cycles bifurcated from the double homoclinic loop. For the case a>0, b<0 the system has at most three limit cycles bifurcated from Hopf bifurcation or has three limit cycles bifurcated from the heteroclinic loop.


Sign in / Sign up

Export Citation Format

Share Document