Early Detection and Accurate Description of Extent of Metastatic Bone Disease in Breast Cancer With Fluoride Ion and Positron Emission Tomography

1999 ◽  
Vol 17 (8) ◽  
pp. 2381-2381 ◽  
Author(s):  
Holger Schirrmeister ◽  
Albrecht Guhlmann ◽  
Jörg Kotzerke ◽  
Claudia Santjohanser ◽  
Thorsten Kühn ◽  
...  

PURPOSE: Previous studies have shown that bone metastases are revealed by magnetic resonance imaging (MRI) or bone marrow scintigraphy several months before they are visible by conventional bone scintigraphy (BS). We present a new approach for detecting bone metastases in patients with breast cancer. We compared findings obtained with fluoride ion (F-18) and positron emission tomography (PET) with those obtained with conventional BS. PATIENTS AND METHODS: Thirty-four breast cancer patients were prospectively examined using F-18–PET and conventional BS. F-18–PET and BS were performed within 3 weeks of each other. Metastatic bone disease was previously known to be present in six patients and was suspected (bone pain or increasing levels of tumor markers, Ca2+, alkaline phosphatase) in 28 patients. Both imaging modalities were compared by patient-by-patient analysis and lesion-by-lesion analysis, using a five-point scale for receiver operating characteristic (ROC) curve analysis. A panel of reference methodswas used, including MRI (28 patients), planar x-ray (17 patients), and spiral computed tomography (four patients). RESULTS: With F-18–PET, 64 bone metastases were detected in 17 patients. Only 29 metastases were detected in 11 patients with BS. As a result of F-18–PET imaging, clinical management was changed in four patients (11.7%). For F-18–PET, the area under the ROC curve was 0.99 on a lesion basis (for BS, it was 0.74; P < .05) and 1.00 on a patient basis (for BS, it was 0.82; P < .05). CONCLUSION: F-18–PET demonstrates a very early bone reaction when small bone marrow metastases are present, allowing accurate detection of breast cancer bone metastases. This accurate detection has a significant effect on clinical management, compared with the effect on management brought about by detection with conventional BS.

Molecules ◽  
2019 ◽  
Vol 25 (1) ◽  
pp. 134 ◽  
Author(s):  
Christos Sachpekidis ◽  
Hartmut Goldschmidt ◽  
Antonia Dimitrakopoulou-Strauss

Multiple myeloma (MM) is a plasma cell disorder, characterized by clonal proliferation of malignant plasma cells in the bone marrow. Bone disease is the most frequent feature and an end-organ defining indicator of MM. In this context, imaging plays a pivotal role in the management of the malignancy. For several decades whole-body X-ray survey (WBXR) has been applied for the diagnosis and staging of bone disease in MM. However, the serious drawbacks of WBXR have led to its gradual replacement from novel imaging modalities, such as computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT). PET/CT, with the tracer 18F-fluorodeoxyglucose (18F-FDG), is now considered a powerful diagnostic tool for the detection of medullary and extramedullary disease at the time of diagnosis, a reliable predictor of survival as well as the most robust modality for treatment response evaluation in MM. On the other hand, 18F-FDG carries its own limitations as a radiopharmaceutical, including a rather poor sensitivity for the detection of diffuse bone marrow infiltration, a relatively low specificity, and the lack of widely applied, established criteria for image interpretation. This has led to the development of several alternative PET tracers, some of which with promising results regarding MM detection. The aim of this review article is to outline the major applications of PET/CT with different radiopharmaceuticals in the clinical practice of MM.


Sign in / Sign up

Export Citation Format

Share Document